Patents by Inventor Mohamed Nabil

Mohamed Nabil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11591880
    Abstract: A method includes wrapping a packer bag around a deployment tool, providing at least one canister in fluid communication with the packer bag, sending the packer bag around the downhole tool to a downhole location in a well, and injecting a polymer filler material from the at least one canister into the packer bag until the packer bag expands to seal the downhole location.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: February 28, 2023
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Mohamed Nabil Noui-Mehidi, Jinjiang Xiao, Wael O. Badeghaish
  • Patent number: 11549836
    Abstract: A multiphase flow metering device may have a conduit through which a multiphase fluid can flow and a structured packing insert positioned in the conduit. The structured packing insert may have a water-wet packing structure zone and/or an oil-wet packing structure zone. The multiphase flow metering device may also have a Halbach pre-polarizing magnet array positioned around the conduit, an RF coil, an electromagnet, an NMR console adapted to detect NMR signals from the multiphase fluid, and a control system configured to vary a polarization of the Halbach pre-polarizing magnet array. The Halbach pre-polarizing magnet array may be positioned or positionable over one or both of the oil-wet and water-wet packing structure zones. In some embodiments, the structured packing insert may include immobilized radicals, providing for dynamic nuclear polarization of the multiphase fluid.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: January 10, 2023
    Assignees: SAUDI ARABIAN OIL COMPANY, UNIVERSITY OF WESTERN AUSTRALIA
    Inventors: Michael Leslie Johns, Masoumeh Zargar, Einar Orn Fridjonsson, Paul Stanwix, Jana M. Al-Jindan, Mohamed Nabil Noui-Mehidi
  • Patent number: 11525723
    Abstract: Techniques for measuring fluid properties include circulating a mixed-phase fluid flow through a fluid flow circuit; circulating the mixed-phase fluid flow through a pre-polarizing magnet; polarizing at least a gas phase of the mixed-phase fluid flow to an initial polarization; measuring fluid induction decay (FID) values of the polarized gas phase with the EFNMR detector; determining a velocity of the gas phase based on the FID values of the polarized gas phase; producing a pulsed magnetic field gradient to suppress one or more signals acquired by the EFNMR detector with a first electromagnet; measuring FID values of the liquid phase of the mixed-phase fluid with the EFNMR detector simultaneously with the production of the pulsed magnetic field gradient; producing a homogeneous polarizing field to polarize the liquid phase of the mixed-phase fluid with a second electromagnet; and determining a velocity and content of the liquid phase based on the FID values of the polarized liquid phase.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: December 13, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Keelan Thomas O'Neill, Michael Leslie Johns, Einar Orn Fridjonsson, Paul Louis Stanwix, Jana M. Al-Jindan, Mohamed Nabil Noui-Mehidi
  • Publication number: 20220381597
    Abstract: A multiphase flow metering device may have a conduit through which a multiphase fluid can flow and a structured packing insert positioned in the conduit. The structured packing insert may have a water-wet packing structure zone and/or an oil-wet packing structure zone. The multiphase flow metering device may also have a Halbach pre-polarizing magnet array positioned around the conduit, an RF coil, an electromagnet, an NMR console adapted to detect NMR signals from the multiphase fluid, and a control system configured to vary a polarization of the Halbach pre-polarizing magnet array. The Halbach pre-polarizing magnet array may be positioned or positionable over one or both of the oil-wet and water-wet packing structure zones. In some embodiments, the structured packing insert may include immobilized radicals, providing for dynamic nuclear polarization of the multiphase fluid.
    Type: Application
    Filed: May 26, 2021
    Publication date: December 1, 2022
    Applicants: SAUDI ARABIAN OIL COMPANY, UNIVERSITY OF WESTERN AUSTRALIA
    Inventors: Michael Leslie Johns, Masoumeh Zargar, Einar Orn Fridjonsson, Paul Stanwix, Jana M. Al-Jindan, Mohamed Nabil Noui-Mehidi
  • Publication number: 20220320956
    Abstract: An electrical machine (1) comprising: a rotatable drive shaft having a rotational axis (15); a rotor assembly (2) connected to the drive shaft, the rotor assembly 2 arranged to generate a static rotor magnetic field; a primary stator assembly (4), comprising a plurality of stator coils (5a, 5b) arranged to generate a rotating stator magnetic field for interacting with the static rotor magnetic field of the rotor assembly (2) such as to rotate the rotor assembly (2) along the rotational axis (15), and a secondary stator assembly (7) arranged to generate a static stator magnetic field; wherein the electrical machine (1) comprises a magnetic torsion spring (9) formed by the interaction of the static stator magnetic field with the static rotor magnetic field.
    Type: Application
    Filed: June 5, 2020
    Publication date: October 6, 2022
    Applicant: Universiteit Gent
    Inventors: Peter Sergeant, Mohamed Nabil Fathy Ibrahim, Hendrik Vansompel
  • Patent number: 11460330
    Abstract: A vortex flow meter is within a flow conduit. The vortex flow meter includes a housing defining a flow passage substantially in-line with the flow conduit. An actuable buff body is within the flow passage. A sensor is downstream of the actuable buff body and is attached to the housing. The sensor is configured to detect vortex shedding. A controller is configured to send a drive signal to an oscillator to oscillate the buff body. The controller is configured to receive a vortex stream from the sensor. The vortex stream is indicative of vortexes shed by the buff body within a fluid. The controller is configured to determine a flow velocity responsive to the received vortex stream.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: October 4, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Jana M. Al-Jindan, Mohamed Nabil Noui-Mehidi
  • Patent number: 11448618
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for monitoring slug flow in subterranean wells. In one aspect, a method includes at a time instant, transmitting an acoustic signal across a cross-section of a pipeline flowing multiphase fluid including gaseous fluid and liquid fluid, wherein a portion of the acoustic signal is carried through the cross-section of the pipeline by the multiphase fluid and determining, at the time instant, a first quantity of the gaseous fluid and a second quantity of the liquid fluid passing the cross-section of the pipeline based, in part, on an energy of the portion of the acoustic signal carried through the cross-section and at least a portion of a total energy of the transmitted acoustic signal.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: September 20, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Talha Jamal Ahmad, Michael J. Black, Mohamed Nabil Noui-Mehidi
  • Publication number: 20220282614
    Abstract: A downhole monitoring system for continuously measuring in real-time a fluid produced from a reservoir includes a tubing extending into a wellbore, spaced apart packers forming annular seals between the tubing and a wall of the wellbore, isolated compartments formed between the spaced apart packers, each compartment having an opening in the tubing to allow fluid communication from the reservoir to surface equipment, and an ultraviolet spectrometer installed in each compartment. The ultraviolet spectrometer includes an ultra-violet source that excites diamondoids, a photomultiplier to quantify the excited diamondoids, and an electronic circuit that digitizes a response from the photomultiplier and sends the response to the surface of the wellbore. Additionally, a method includes continuously monitoring and in real-time a fluid produced from a reservoir and determining reservoir connectivity and reservoir profiling.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 8, 2022
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventors: Abdulaziz S. Al-Qasim, Yuguo Wang, Mohamed Nabil Noui-Mehidi
  • Patent number: 11428557
    Abstract: Techniques for measuring liquid properties include circulating a mixed oil-water liquid flow through a fluid flow circuit; polarizing the mixed oil-water liquid flow with a pre-polarizing magnet to an initial polarization; circulating the polarized mixed oil-water liquid flow to an EFNMR detector that includes a radio-frequency (RF) coil and a surrounding electromagnet; further polarizing the polarized mixed oil-water liquid flow with the surrounding electromagnet; measuring fluid induction decay (FID) values of the additionally polarized mixed oil-water liquid flow with the EFNMR detector; transforming the measured FID values to an effective adiabatic transition from the Earth's field to the polarizing field; determining a velocity of the oil in the mixed oil-water liquid flow and a velocity of the water in the mixed oil-water liquid flow based on differences in NMR signal relaxation properties of the transformed FID values; and determining an oil content and a water content of the mixed oil-water liquid flo
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: August 30, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Keelan Thomas O'Neill, Michael Leslie Johns, Einar Orn Fridjonsson, Paul Louis Stanwix, Jana M. Al-Jindan, Mohamed Nabil Noui-Mehidi
  • Patent number: 11401782
    Abstract: Methods, apparatus and systems for in-situ heating fluids with electromagnetic radiation are provided. An example tool includes a housing operable to receive a fluid flowed through a flow line and a heater positioned within the housing. The heater includes a number of tubular members configured to receive portions of the fluid and an electromagnetic heating assembly positioned around the tubular members and configured to generate electromagnetic radiation transmitted to heat the tubular members. The heated tubular members can heat the portions of the fluid to break emulsion in the fluid. Upstream the heater, the tool can include a homogenizer operable to mix the fluid to obtain a homogenous fluid and a stabilizer operable to stabilize the fluid to obtain a linear flow. Downstream the heater, the tool can include a separator operable to separate lighter components from heavier components in the fluid after the emulsion breakage.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: August 2, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Sameeh Issa Batarseh, Mohamed Nabil Noui-Mehidi
  • Publication number: 20220218647
    Abstract: A compound having the formula (1), (2), (3) or (4), or combinations thereof, for use in the treatment or prevention of cardiovascular disorders in a subject, wherein R1, R2, R3, R4, R5 and R6 are independently, a long chain fatty acid having between 16 and 20 carbons.
    Type: Application
    Filed: May 20, 2020
    Publication date: July 14, 2022
    Inventors: LUCAS ACTIS GORETTA, MOHAMED NABIL BOSCO, AMAURY PATIN
  • Patent number: 11384439
    Abstract: Some examples of a method for manufacturing an electrode material for electrolytic hydrogen generation are described. Tungsten salt and nickel salt are mixed in a determined molar ratio on a carbon support by effectively controlling synthesis temperature and composition. Water and adsorbed oxygen, produced by mixing the tungsten salt and nickel salt are removed. Then, methane gas is flowed over the mixture resulting in the electrode material. The electrode material is suitable for use as a catalyst in electrolytic hydrogen generation processes, for example, at an industrial scale, to produce large quantities of hydrogen.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: July 12, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Belabbes Merzougui, Bukola Saheed Abidemi, Mohammad Qamar, Adeola Akeem Akinpelu, Mohamed Nabil Noui-Mehidi
  • Patent number: 11371319
    Abstract: An example system includes a moveable platform having an uphole end and a downhole end. The platform includes a drive arrangement for moving the platform in one or more directions along an interior wall of a casing string in a wellbore. The platform includes scraping arrangement for removing debris from the interior wall of the casing string. The platform includes a debris catching arrangement downhole of the scraping arrangement for collecting some or all of the debris removed. The platform may include a coating arrangement to deliver and apply a substance to at least a part of the wall of the casing string. The coating arrangement may include a reservoir holding one or more liquid substances and a valve to regulate flow of the one or more liquid substances. The liquid substance may include epoxy resin.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: June 28, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Abdulrahman Abdulaziz Al Mulhem, Wael O. Badeghaish, Mohamed Nabil Noui-Mehidi
  • Patent number: 11326401
    Abstract: A tool for forming a cavern for hydrocarbon production includes a housing having a cavity. A rotary actuator is disposed in the cavity. A fluid dispenser has an internal chamber to receive an aqueous solution and one or more nozzles to dispense the aqueous solution. The fluid dispenser is coupled to the rotary actuator and is rotatable about a tool axis by the rotary actuator. One or more proximity sensors are disposed at a perimeter of the housing to measure a distance relative to the tool.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: May 10, 2022
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Mohamed Nabil Noui-Mehidi, Khalid M. Ruwaili
  • Publication number: 20220135868
    Abstract: Systems for generating stable emulsions may employ one or more liquid-liquid ejectors for mixing the oil with water through motive and suction streams to produce the emulsion as a discharge stream. One or more motive tanks may be fluidly coupled to the one or more liquid-liquid ejectors; the one or more motive tanks may supply the one or more liquid-liquid ejectors with a motive fluid. One or more suction tanks may be fluidly coupled to the one or more liquid-liquid ejectors; the one or more suction tanks may supply the one or more liquid-liquid ejectors with a suction fluid. One or more discharge tanks may be fluidly coupled to the one or more liquid-liquid ejectors; the one or more discharge tanks may collect an emulsion from the one or more liquid-liquid ejectors. Additionally, a flow line coupled to the one or more discharge tanks may feed the emulsions into a formation.
    Type: Application
    Filed: November 4, 2020
    Publication date: May 5, 2022
    Applicants: SAUDI ARABIAN OIL COMPANY, KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
    Inventors: Abdelsalam Mohammad Al-Sarkhi, Omer Abdelazim Salim, Mohamed Nabil Noui-Mehidi, Ahmad Rizq
  • Publication number: 20220065672
    Abstract: Techniques for measuring liquid properties include circulating a mixed oil-water liquid flow through a fluid flow circuit; polarizing the mixed oil-water liquid flow with a pre-polarizing magnet to an initial polarization; circulating the polarized mixed oil-water liquid flow to an EFNMR detector that includes a radio-frequency (RF) coil and a surrounding electromagnet; further polarizing the polarized mixed oil-water liquid flow with the surrounding electromagnet; measuring fluid induction decay (FID) values of the additionally polarized mixed oil-water liquid flow with the EFNMR detector; transforming the measured FID values to an effective adiabatic transition from the Earth's field to the polarizing field; determining a velocity of the oil in the mixed oil-water liquid flow and a velocity of the water in the mixed oil-water liquid flow based on differences in NMR signal relaxation properties of the transformed FID values; and determining an oil content and a water content of the mixed oil-water liquid flo
    Type: Application
    Filed: August 31, 2020
    Publication date: March 3, 2022
    Inventors: Keelan Thomas O'Neill, Michael Leslie Johns, Einar Orn Fridjonsson, Paul Louis Stanwix, Jana M. Al-Jindan, Mohamed Nabil Noui-Mehidi
  • Publication number: 20220065673
    Abstract: Techniques for measuring fluid properties include circulating a mixed-phase fluid flow through a fluid flow circuit; circulating the mixed-phase fluid flow through a pre-polarizing magnet; polarizing at least a gas phase of the mixed-phase fluid flow to an initial polarization; measuring fluid induction decay (FID) values of the polarized gas phase with the EFNMR detector; determining a velocity of the gas phase based on the FID values of the polarized gas phase; producing a pulsed magnetic field gradient to suppress one or more signals acquired by the EFNMR detector with a first electromagnet; measuring FID values of the liquid phase of the mixed-phase fluid with the EFNMR detector simultaneously with the production of the pulsed magnetic field gradient; producing a homogeneous polarizing field to polarize the liquid phase of the mixed-phase fluid with a second electromagnet; and determining a velocity and content of the liquid phase based on the FID values of the polarized liquid phase.
    Type: Application
    Filed: August 31, 2020
    Publication date: March 3, 2022
    Inventors: Keelan Thomas O'Neill, Michael Leslie Johns, Einar Orn Fridjonsson, Paul Louis Stanwix, Jana M. Al-Jindan, Mohamed Nabil Noui-Mehidi
  • Publication number: 20220058881
    Abstract: A system, apparatus, device, or method to output different iterations of data entities. The method may include establishing a first data entity; establishing a first state for the first data entity. The method may include establishing a second state for the first data entity. The method may include storing the first data entity, the first state, and the second state at a storage device. The method may include retrieving a first iteration of the first data entity exhibiting at least a portion of the first state. The method may include retrieving a second iteration of the first data entity exhibiting at least a portion of the second state. The method may include outputting the first iteration and the second iteration at an output time.
    Type: Application
    Filed: August 31, 2021
    Publication date: February 24, 2022
    Inventors: Sina Fateh, Ron Butterworth, Mohamed Nabil Hajj Chehade, Allen Yang Yang, Sleiman Itani
  • Publication number: 20220049598
    Abstract: An apparatus for measuring environmental parameters along a drill string includes a protector disposed radially around the drill string, and a sensor system with an optical fiber configured to collect data on environmentalditions within a wellbore through which the drill string is being inserted. Protector is made of a composite material having the sensor system and the optical fiber embedded within. Collected data may be extracted from the sensor system. A method of collecting data on environmental conditions within a wellbore includes disposing a sensor system onto a matrix substrate of a protector; coating the sensor system and matrix substrate with a composite material; curing the composite material so as to embed the sensor system within the protector; forming a protector around a drill string; using the sensor system to collect data from within the wellbore upon insertion of the drill string and protector; and retrieving the collected data.
    Type: Application
    Filed: August 14, 2020
    Publication date: February 17, 2022
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventors: Wael Badeghaish, Mohamed Nabil Noui-Mehidi
  • Publication number: 20220034187
    Abstract: A method includes wrapping a packer bag around a deployment tool, providing at least one canister in fluid communication with the packer bag, sending the packer bag around the downhole tool to a downhole location in a well, and injecting a polymer filler material from the at least one canister into the packer bag until the packer bag expands to seal the downhole location.
    Type: Application
    Filed: July 30, 2020
    Publication date: February 3, 2022
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventors: Mohamed Nabil Noui-Mehidi, Jinjiang Xiao, Wael O. Badeghaish