Patents by Inventor Mohamed Rahim

Mohamed Rahim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230268716
    Abstract: A laser comprising a narrow linewidth, comprising: a grating along a laser cavity; a laser waveguide having a plurality of waveguide sections corresponding to a plurality of grating sections, each of the plurality of waveguide sections having a ridge/mesa width for detuning the grating in each of the plurality of grating sections; and a plurality of contact electrodes contacting each of the plurality of waveguide sections, the plurality of contact electrodes for applying a different current to each of the plurality of waveguide sections to enable active feedback noise suppression.
    Type: Application
    Filed: July 22, 2021
    Publication date: August 24, 2023
    Inventors: Grzegorz PAKULSKI, Mohamed RAHIM, Michel MORIN, Simon AYOTTE, Keven BÉDARD, Muhammad MOHSIN
  • Publication number: 20220221715
    Abstract: A synthesized grating is provided comprising a substrate/layer, and a plurality of alternating aperiodic non-uniform low and high index profiles on a surface of the substrate/layer defining a transmission/reflection spectrum for one of either single or multi-frequency operation of said grating in an optical cavity. A method is also provided for designing the synthesized grating, comprising determining a grating structure of given profiles through analysis of an optimized weighted sum and mapping the grating profile to said surface with the plurality of alternating non-uniform low and high index profiles.
    Type: Application
    Filed: April 30, 2020
    Publication date: July 14, 2022
    Inventors: Mohamed RAHIM, Greg PAKULSKI, Philip POOLE, Zhenguo LU
  • Publication number: 20200219818
    Abstract: Unlike most MEMS device configurations which simply switch between two positions in many optical devices the state of a MEMS mirror is important in all transition positions. It may determine the characteristics of an optical delay line system and by that an optical coherence tomography system in one application and in another the number of wavelength channels and the dynamic wavelength switching capabilities in the other. The role of the MEMS is essential and it is responsible for altering the paths of the different wavelengths in either device. It would be beneficial to improve the performance of such MEMS and thereby the performance of the optical components and optical systems they form part of. The inventors have established improvements to the design and implementation of such MEMS mirrors as well as optical waveguide technologies to in-plane optical processing as well as the mid infrared for optical spectroscopy.
    Type: Application
    Filed: January 13, 2020
    Publication date: July 9, 2020
    Inventors: MICHAEL MENARD, FREDERIC NABKI, MOHAMED RAHIM, JONATHAN BRIERE, PHILIPPE-OLIVIER BEAULIEU
  • Patent number: 10534137
    Abstract: Unlike most MEMS device configurations which simply switch between two positions in many optical devices the state of a MEMS mirror is important in all transition positions. It may determine the characteristics of an optical delay line system and by that an optical coherence tomography system in one application and in another the number of wavelength channels and the dynamic wavelength switching capabilities in the other. The role of the MEMS is essential and it is responsible for altering the paths of the different wavelengths in either device. It would be beneficial to improve the performance of such MEMS and thereby the performance of the optical components and optical systems they form part of. The inventors have established improvements to the design and implementation of such MEMS mirrors as well as optical waveguide technologies to in-plane optical processing as well as the mid infrared for optical spectroscopy.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: January 14, 2020
    Assignee: Transfert Plus Societe en Commandite
    Inventors: Michael Menard, Frederic Nabki, Mohamed Rahim, Jonathan Briere, Philippe-Olivier Beaulieu
  • Publication number: 20180364420
    Abstract: Unlike most MEMS device configurations which simply switch between two positions in many optical devices the state of a MEMS mirror is important in all transition positions. It may determine the characteristics of an optical delay line system and by that an optical coherence tomography system in one application and in another the number of wavelength channels and the dynamic wavelength switching capabilities in the other. The role of the MEMS is essential and it is responsible for altering the paths of the different wavelengths in either device. It would be beneficial to improve the performance of such MEMS and thereby the performance of the optical components and optical systems they form part of. The inventors have established improvements to the design and implementation of such MEMS mirrors as well as optical waveguide technologies to in-plane optical processing as well as the mid infrared for optical spectroscopy.
    Type: Application
    Filed: July 30, 2018
    Publication date: December 20, 2018
    Inventors: MICHAEL MENARD, FREDERIC NABKI, MOHAMED RAHIM, JONATHAN BRIERE, PHILIPPE-OLIVIER BEAULIEU
  • Patent number: 10067293
    Abstract: Unlike most MEMS device configurations which simply switch between two positions in many optical devices the state of a MEMS mirror is important in all transition positions. It may determine the characteristics of an optical delay line system and by that an optical coherence tomography system in one application and in another the number of wavelength channels and the dynamic wavelength switching capabilities in the other. The role of the MEMS is essential and it is responsible for altering the paths of the different wavelengths in either device. It would be beneficial to improve the performance of such MEMS and thereby the performance of the optical components and optical systems they form part of. The inventors have established improvements to the design and implementation of such MEMS mirrors as well as optical waveguide technologies to in-plane optical processing as well as the mid infrared for optical spectroscopy.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: September 4, 2018
    Assignee: Transfert Plus, Societe en Commandite
    Inventors: Michael Menard, Frederic Nabki, Mohamed Rahim, Jonathan Briere, Philippe-Olivier Beaulieu
  • Publication number: 20170017043
    Abstract: Unlike most MEMS device configurations which simply switch between two positions in many optical devices the state of a MEMS mirror is important in all transition positions. It may determine the characteristics of an optical delay line system and by that an optical coherence tomography system in one application and in another the number of wavelength channels and the dynamic wavelength switching capabilities in the other. The role of the MEMS is essential and it is responsible for altering the paths of the different wavelengths in either device. It would be beneficial to improve the performance of such MEMS and thereby the performance of the optical components and optical systems they form part of. The inventors have established improvements to the design and implementation of such MEMS mirrors as well as optical waveguide technologies to in-plane optical processing as well as the mid infrared for optical spectroscopy.
    Type: Application
    Filed: March 9, 2015
    Publication date: January 19, 2017
    Inventors: MICHAEL MENARD, FREDERIC NABKI, MOHAMED RAHIM, JONATHAN BRIERE, PHILIPPE-OLIVIER BEAULIEU
  • Publication number: 20130077648
    Abstract: A VECSEL-type surface-emitting semiconductor laser device is manufactured by providing a first component part (10) comprising a layered first mirror (12), providing a second component part (20) comprising a layered active region (22), permanently joining the second component part to the first component part to form an integral unit, and arranging a second mirror (32) so as to form an optical cavity containing the active region. This method of manufacture enables production at lower cost and enables greater flexibility in the choice of materials for the mirrors and the active region well as for the substrates on which the first mirror and the active region are deposited, as compared to traditional monolithic epitaxy methods. Preferably, the laser device is a IV-VI-type VECSEL emitting in the mid-IR range of the electromagnetic spectrum.
    Type: Application
    Filed: March 21, 2011
    Publication date: March 28, 2013
    Applicant: ETH ZURICH, ETH TRANSFER
    Inventors: Ferdinand Felder, Mohamed Rahim, Matthias Fill, Martin Arnold, Hans Zogg