Patents by Inventor Mohamed Rahmane

Mohamed Rahmane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180051633
    Abstract: Embodiments of the present disclosure relate to a spark gap device that includes a first electrode having a first surface and a second electrode having a second surface offset from and facing the first surface. The spark gap device also includes a light source configured to emit light toward at least the first surface such that photons emitted by the light source when the spark gap is operated are incident on the first surface and cause electron emission from the first surface. The light source includes a discharge probe having a third electrode sealed in a tube filled with an inert gas. The spark gap device may not include a radioactive component.
    Type: Application
    Filed: January 6, 2017
    Publication date: February 22, 2018
    Inventors: Joseph Darryl Michael, Timothy John Sommerer, Karim Younsi, Mohamed Rahmane, Jason Fredrick Trotter
  • Publication number: 20180054881
    Abstract: Embodiments of the present disclosure relate to a spark gap device that includes a first electrode having a first surface and a second electrode having a second surface offset from and facing the first surface. The spark gap device also includes a cantilevered component coupled to the first electrode that is configured to generate a field emission, a corona discharge or both, to emit light toward at least the first surface such that photons are incident on the first surface and cause electron emission from the first surface. The spark gap device may not include a radioactive component.
    Type: Application
    Filed: January 6, 2017
    Publication date: February 22, 2018
    Inventors: Joseph Darryl Michael, Timothy John Sommerer, Karim Younsi, Mohamed Rahmane
  • Publication number: 20180054045
    Abstract: An approach is disclosed for generating seed electrons at a spark gap in the absence of 85Kr. The present approach utilizes the photo-electric effect, using a light source with a specific nominal wave length (or range of wavelengths) at a specific level of emitted flux to generate seed electrons.
    Type: Application
    Filed: August 17, 2016
    Publication date: February 22, 2018
    Inventors: Joseph Darryl Michael, Jason Fredrick Trotter, Mohamed Rahmane, Timothy John Sommerer, Karim Younsi
  • Patent number: 9806380
    Abstract: An electrochemical cell is described, including an anodic chamber and a cathodic chamber separated by an electrolyte separator tube, all contained within a cell case. The cell also includes an electrically insulating ceramic collar positioned at an opening of the cathodic chamber, and defining an aperture in communication with the opening; along with a cathode current collector assembly; and at least one metallic ring that has a coefficient of thermal expansion (CTE) in the range of about 3 to about 7.5 ppm/° C., contacting at least a portion of a metallic component within the cell, and an adjacent ceramic component. An active braze alloy composition attaches and hermetically seals the ring to the metallic component and the collar. Sodium metal halide batteries that contain this type of cell are also described, along with methods for sealing structures within the cell.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: October 31, 2017
    Assignee: General Electric Company
    Inventors: Sundeep Kumar, Thomas Martin Angeliu, Mohamed Rahmane, Arunabh Basak, Raghavendra Rao Adharapurapu, Tobias Eicke Juetting
  • Patent number: 9735401
    Abstract: The present application provides configurations, components, assemblies and methods for sealing cells of sodium-based thermal batteries, such as NaMx cells. In some embodiments the cells may include an integrated bridge member hermetically sealed to an electrically conductive case and a ceramic collar of the cell to hermetically seal an anodic chamber of the cell. In some embodiments the cells may include the ceramic collar hermetically sealed to an electrolyte separator tube of the cell to hermetically seal the anodic chamber of the cell. In some embodiments the anodic chamber may be defined, at least in part, by the case, integrated bridge member, ceramic collar and electrolyte separator tube. In some embodiments the cells may include a current collector hermetically sealed to the ceramic collar, and a cap member hermetically sealed to the current collector tube to hermetically seal a cathodic chamber of the cell.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: August 15, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Sundeep Kumar, Mohamed Rahmane, Neil A. Johnson, Patrick D. Willson, Raymond R. Cole, Timothy Yosenick, Thomas Angeliu, Tobias Juetting
  • Patent number: 9577297
    Abstract: An electrochemical cell is presented. The cell includes a housing having an interior surface defining a volume, and an elongated separator disposed in the housing volume. The elongated separator defines an axis of the cell. The separator has an inner surface and an outer surface. The inner surface of the separator defines a first compartment. The outer surface of the separator and the interior surface of the housing define a second compartment having a volume. The cell further includes a conductive matrix disposed in at least a portion of the second compartment volume such that the conductive matrix occupies a gap between the outer surface of the separator and the interior surface of the housing. The gap in the second compartment extends in a direction substantially perpendicular to the axis of the cell.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: February 21, 2017
    Assignee: General Electric Company
    Inventors: Mohamed Rahmane, Badri Narayan Ramamurthi, Andrey Meshkov, Richard Louis Hart, Michael Alan Vallance, David Charles Bogdan, Jr., Chandra Sekher Yerramalli
  • Patent number: 9548518
    Abstract: A method for joining a ceramic component to a metallic component is described. At least one initial layer of an active metal is applied to one of the joining surfaces, by a cold spray technique. At least one second layer of a nickel-based braze composition is then applied over the initial layer by cold-spraying. The braze composition and components are then heated, so as to form an active braze joint between them. A method of sealing an open region of a sodium metal halide-based battery is also disclosed, using the brazing technique described herein to form braze joints that seal various components in the battery cells, such as metallic rings and ceramic collar structures.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: January 17, 2017
    Assignee: General Electric Company
    Inventors: Sundeep Kumar, Eklavya Calla, Mohamed Rahmane
  • Publication number: 20160354869
    Abstract: A braze alloy composition is disclosed, containing nickel, about 5% to about 40% of at least one refractory metal selected from niobium, tantalum, or molybdenum; about 2% to about 32% chromium; and about 0.5% to about 10% of at least one active metal element. An electrochemical cell that includes two components joined to each other by such a braze composition is also described. A method for joining components such as those within an electrochemical cell is also described. The method includes the step of introducing a braze alloy composition between a first component and a second component to be joined, to form a brazing structure. In many instances, one component is formed of a ceramic, while the other is formed of a metal or metal alloy.
    Type: Application
    Filed: August 15, 2016
    Publication date: December 8, 2016
    Inventors: Sundeep Kumar, Raghavendra Rao Adharapurapu, Mohamed Rahmane
  • Publication number: 20160172713
    Abstract: A method for joining a ceramic component to a metallic component is described. At least one initial layer of an active metal is applied to one of the joining surfaces, by a cold spray technique. At least one second layer of a nickel-based braze composition is then applied over the initial layer by cold-spraying. The braze composition and components are then heated, so as to form an active braze joint between them. A method of sealing an open region of a sodium metal halide-based battery is also disclosed, using the brazing technique described herein to form braze joints that seal various components in the battery cells, such as metallic rings and ceramic collar structures.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 16, 2016
    Inventors: Sundeep Kumar, Eklavya Calla, Mohamed Rahmane
  • Patent number: 9368774
    Abstract: An electrolyte separator structure is provided. The electrolyte separator structure comprises a graded integral structure, wherein the structure comprises an ion-conducting first ceramic at a first end and an electrically insulating second ceramic at a second end, wherein the difference in the coefficient of thermal expansion of the ion-conducting first ceramic and the electrically insulating second ceramic is less than or equal to about 5 parts per million per degrees Centigrade, and wherein at least one of the first ceramic or the second ceramic comprises a strengthening agent. Method of making the ion-separator structure is provided. Electrochemical cells comprising the ion-separator structure and method of making the electrochemical cell using the ion-separator structure are also provided.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: June 14, 2016
    Assignee: General Electric Company
    Inventors: Sundeep Kumar, Mohamed Rahmane, Mohandas Nayak, Arunabh Basak, Kalaga Murali Krishna, Atanu Saha
  • Patent number: 9362537
    Abstract: An electrochemical cell is presented. The cell includes a housing having an interior surface defining a volume, and an elongated, ion-conducting separator disposed in the volume. The separator usually extends in a vertical direction relative to a base of the housing, so as to define a height dimension of the cell. The separator has a first circumferential surface defining a portion of a first compartment. The cell further includes a shim structure disposed generally parallel to the first circumferential surface of the separator between the interior surface and the first circumferential surface of the separator. The structure includes at least two shims, a first shim and a second shim, that substantially overlap each other. An energy storage device including such an electrochemical cell is also provided.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: June 7, 2016
    Assignee: General Electric Company
    Inventors: Guillermo Daniel Zappi, Mohamed Rahmane, Benjamin Hale Winkler, James Lowe Sudworth, Roger Neil Bull, Charles Dominic Iacovangelo
  • Publication number: 20150318586
    Abstract: An electrochemical cell is presented. The cell includes a housing having an interior surface defining a volume, and an elongated separator disposed in the housing volume. The elongated separator defines an axis of the cell. The separator has an inner surface and an outer surface. The inner surface of the separator defines a first compartment. The outer surface of the separator and the interior surface of the housing define a second compartment having a volume. The cell further includes a conductive matrix disposed in at least a portion of the second compartment volume such that the conductive matrix occupies a gap between the outer surface of the separator and the interior surface of the housing. The gap in the second compartment extends in a direction substantially perpendicular to the axis of the cell.
    Type: Application
    Filed: July 13, 2015
    Publication date: November 5, 2015
    Inventors: Mohamed Rahmane, Badri Narayan Ramamurthi, Andrey Meshkov, Richard Louis Hart, Michael Alan Vallance, David Charles Bogdan, JR., Chandra Sekher Yerramalli
  • Patent number: 9130249
    Abstract: The battery cell design includes a battery cell component comprises a current conducting element, that includes at least a portion that is hollow, further component is configured to be located within a battery cell. Another embodiment of the component comprises a first element that defines a first fluid path therein; and a second element that defines a second fluid path, wherein the two fluid paths are in communication with each other, further wherein the battery cell component is configured to conduct electric current. A battery cell and battery cell assembly that uses the component, and a method of cooling a battery assembly is also disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: September 8, 2015
    Assignee: General Electric Company
    Inventors: Badri Narayan Ramamurthi, Satoshi Atsuchi, Andrey I Meshkov, Mohamed Rahmane, Svetlana Selezneva
  • Patent number: 9105896
    Abstract: The present application provides for metal rings and ceramic collars for active brazing in sodium-based thermal batteries. The metal rings may be outer and inner Ni rings configured for sealing to an alpha-alumina collar via active brazing for use in NaMx cells. The inner and outer Ni metal rings may be sealed to differing portions of the alpha-alumina collar. The portions of the outer and inner Ni rings active brazed to the alpha-alumina collar may define a tapered thickness that reduces internal stresses at the active brazed joints resulting from differing coefficients of thermal expansion between the Ni metal rings and the alpha-alumina collar. The portions of the outer and inner Ni rings and alpha-alumina collar sealed by active brazing, and thereby the active braze joints themselves, may be oriented to control or dictate the stresses on the joints during use.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: August 11, 2015
    Assignee: General Electric Company
    Inventors: Michael Colan Moscinski, Badri Narayan Ramamurthi, Sundeep Kumar, Mohamed Rahmane
  • Patent number: 9028998
    Abstract: The battery cell design includes a battery cell component comprises a current conducting element, that includes at least a portion that is hollow, further component is configured to be located within a battery cell. Another embodiment of the component comprises a first element that defines a first fluid path therein; and a second element that defines a second fluid path, wherein the two fluid paths are in communication with each other, further wherein the battery cell component is configured to conduct electric current. A battery cell and battery cell assembly that uses the component, and a method of cooling a battery assembly is also disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: May 12, 2015
    Assignee: General Electric Company
    Inventors: Badri Narayan Ramamurthi, Satoshi Atsuchi, Andrey I. Meshkov, Mohamed Rahmane, Svetlana Selezneva
  • Patent number: 9028997
    Abstract: The present application provides for ceramic collars and metal rings for active brazing in sodium-based thermal batteries. The ceramic collar may be an alpha-alumina collar configured for active brazing, and thereby sealing, to outer and inner Ni rings for use in NaMx cells. The portions of the alpha-alumina collar active brazed to the outer and inner Ni rings may be outwardly facing and include inwardly extending recesses. The portions of the outer and inner Ni rings active brazed to the outwardly facing portions of the collar may be inwardly facing. The alpha-alumina collar may include a greater coefficient of thermal expansion than each of the outer and inner Ni rings, and the alpha-alumina collar and outer and inner Ni rings may be configured such that a portion of the outer and inner Ni rings is deformed into the inwardly extending recesses of the alpha-alumina collar after active brazing thereof.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 12, 2015
    Assignee: General Electric Company
    Inventors: Michael Colan Moscinski, Reza Sarrafi-Nour, Badri Narayan Ramamurthi, Mohandas Nayak, Darren Michael Stohr, Sundeep Kumar, Mohamed Rahmane, Arunabh Basak, Raghavendra Rao Adharapurapu
  • Publication number: 20140356681
    Abstract: A brazing structure for an electrochemical cell is described. It includes a nickel or nickel alloy component; a ceramic component; a braze alloy layer, containing an active metal element, between the nickel and the ceramic component, and a barrier layer disposed between the nickel layer and the braze alloy layer. The barrier layer is capable of preventing or minimizing the diffusion of the active metal element into the nickel or nickel alloy component. Electrochemical cells that include such a brazing structure are also described, as are related methods for joining nickel components to ceramic components in the manufacture of thermal batteries.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Applicant: General Electric Company
    Inventors: Sundeep Kumar, Mohamed Rahmane, Vipin Raju Suddala
  • Publication number: 20140356682
    Abstract: An electrochemical cell is described, including an anodic chamber and a cathodic chamber separated by an electrolyte separator tube, all contained within a cell case. The cell also includes an electrically insulating ceramic collar positioned at an opening of the cathodic chamber, and defining an aperture in communication with the opening; along with a cathode current collector assembly; and at least one metallic ring that has a coefficient of thermal expansion (CTE) in the range of about 3 to about 7.5 ppm/° C., contacting at least a portion of a metallic component within the cell, and an adjacent ceramic component. An active braze alloy composition attaches and hermetically seals the ring to the metallic component and the collar. Sodium metal halide batteries that contain this type of cell are also described, along with methods for sealing structures within the cell.
    Type: Application
    Filed: July 1, 2014
    Publication date: December 4, 2014
    Inventors: Sundeep Kumar, Thomas Martin Angeliu, Mohamed Rahmane, Arunabh Basak, Raghavendra Rao Adharapurapu, Tobias Eicke Juetting
  • Patent number: 8757471
    Abstract: The present disclosure generally relates to methods of using active braze techniques on beta-alumina. In some specific embodiments, the present disclosure relates to a method of sealing a portion of beta-alumina electrolyte, insulated collar and metal rings of a sodium-based thermal battery.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: June 24, 2014
    Assignee: General Electric Company
    Inventors: Sundeep Kumar, Mohandas Nayak, Mohamed Rahmane
  • Patent number: 8652689
    Abstract: An energy storage device includes a housing having an interior surface defining a volume and a plurality of solid electrolyte elements disposed in the volume. Each solid electrolyte element has a first surface that defines at least a portion of a first, cathodic chamber, and a second surface that defines a second, anodic chamber. A plurality of individual anodic chambers are thus provided, at least one of which is evacuated below atmospheric pressure. A majority of anodic chambers can be spaced from one another in a manner that provides a substantially uniform reaction rate throughout the cathodic chamber.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: February 18, 2014
    Assignee: General Electric Company
    Inventors: Chandra Sekher Yerramalli, Anil Raj Duggal, Andrew Philip Shapiro, Mohamed Rahmane, Reza Sarrafi-Nour, Gregory John Parker, Alireza Namazifard, Badri Narayan Ramamurthi