Patents by Inventor Mohamed Safdar Allie Baksh

Mohamed Safdar Allie Baksh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8016914
    Abstract: The present invention provides a method and a control system for controlling an adsorbent bed unit in which an adsorbent bed concentration of an impurity within an adsorbent bed of the adsorbent bed unit is measured. The adsorbent bed concentration is controlled by manipulating the feed cycle time during which an adsorbent bed is adsorbing the impurities to maintain the adsorbent bed concentration at a targeted adsorption bed concentration. The targeted adsorption bed concentration is determined such that the product impurity concentration is maintained at product impurity concentration targets. The method and control system can incorporate a supervisory level of control reactive to product impurity concentration levels and related targets to determine the targeted adsorption bed concentration and a primary level of control that calculates the feed cycle time based upon an error between the measured and targeted adsorption bed concentrations. Proportional integral control can be used for such purposes.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: September 13, 2011
    Assignee: Praxair Technology, Inc.
    Inventors: Paul W. Belanger, Mohamed Safdar Allie Baksh, Preeti Chandra, Andrew C. Rosinski
  • Patent number: 7867320
    Abstract: The present invention relates to a dual feed and dual vacuum four bed VPSA process for selectively adsorbing a component from a feed stream, e.g., nitrogen from air, to produce an oxygen-enriched gas stream using a multi-port indexing drum valve, a system comprising a multi-port indexing drum valve and method for operating such a system.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: January 11, 2011
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed Safdar Allie Baksh, Michael S. Manning, Ashwin Desai, Preeti Chandra, Paul William Belanger
  • Publication number: 20100251892
    Abstract: The present invention relates generally to processes and systems for recovering helium from low helium-containing feed gases (i.e., containing less than about 10 volume % helium and more typically, less than about 5% helium by volume). The present invention more particularly relates to processes and systems for recovering helium from low helium-containing feed gases using temperature swing adsorption (TSA) systems and multiple (e.g. two) stage vacuum pressure swing adsorption (VPSA) systems. In preferred embodiments of the invention, the first stage VPSA system is configured to provide regeneration gas for the TSA system, and/or the VPSA second stage tail gas is recycled to the first stage VPSA system.
    Type: Application
    Filed: April 28, 2010
    Publication date: October 7, 2010
    Inventor: Mohamed Safdar Allie Baksh
  • Publication number: 20100242722
    Abstract: The present invention provides a method and a control system for controlling an adsorbent bed unit in which an adsorbent bed concentration of an impurity within an adsorbent bed of the adsorbent bed unit is measured. The adsorbent bed concentration is controlled by manipulating the feed cycle time during which an adsorbent bed is adsorbing the impurities to maintain the adsorbent bed concentration at a targeted adsorption bed concentration. The targeted adsorption bed concentration is determined such that the product impurity concentration is maintained at product impurity concentration targets. The method and control system can incorporate a supervisory level of control reactive to product impurity concentration levels and related targets to determine the targeted adsorption bed concentration and a primary level of control that calculates the feed cycle time based upon an error between the measured and targeted adsorption bed concentrations. Proportional integral control can be used for such purposes.
    Type: Application
    Filed: March 25, 2009
    Publication date: September 30, 2010
    Inventors: Paul W. Belanger, Mohamed Safdar Allie Baksh, Preeti Chandra, Andrew C. Rosinski
  • Patent number: 7780764
    Abstract: The present invention relates generally to processes and systems for recovering helium from low helium-containing feed gases (i.e., containing less than about 10 volume % helium and more typically, less than about 5% helium by volume). The present invention more particularly relates to processes and systems for recovering helium from low helium-containing feed gases using temperature swing adsorption (TSA) systems and multiple (e.g. two) stage vacuum pressure swing adsorption (VPSA) systems. In preferred embodiments of the invention, the first stage VPSA system is configured to provide regeneration gas for the TSA system, and/or the VPSA second stage tail gas is recycled to the first stage VPSA system.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: August 24, 2010
    Assignee: Praxair Technology, Inc.
    Inventor: Mohamed Safdar Allie Baksh
  • Patent number: 7763100
    Abstract: Novel polybed VPSA process and system to achieve enhanced O2 recovery are disclosed. The VPSA process comprises using three or more adsorber beds; providing a continuous feed supply gas using a single feed blower to one bed, wherein at any instant during the process, two beds are in an evacuation step and only one bed is in a feed mode; and purging the adsorber beds using two purge gases of different purity. The VPSA cycle may further comprise utilizing a storage device (e.g., a packed or empty equalization tank) to capture void gases during co-current depressurization step of the VPSA cycle, which is used at a later stage for purging and repressurization of the bed. In addition, the VPSA process employs a single feed compressor and two vacuum pumps at 100% utilization. Furthermore, the use of the storage device minimizes the use of product quality gas for purging. About 10-20% improvement in O2 productivity is realized in the new VPSA process.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: July 27, 2010
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed Safdar Allie Baksh, Andrew Chester Rosinski
  • Publication number: 20100077920
    Abstract: The present invention relates to a dual feed and dual vacuum four bed VPSA process for selectively adsorbing a component from a feed stream, e.g., nitrogen from air, to produce an oxygen-enriched gas stream using a multi-port indexing drum valve, a system comprising a multi-port indexing drum valve and method for operating such a system.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Inventors: MOHAMED SAFDAR ALLIE BAKSH, Michael S. Manning, Ashwin Desai, Preeti Chandra, Paul William Belanger
  • Publication number: 20090320679
    Abstract: The present invention relates generally to processes and systems for recovering helium from low helium-containing feed gases (i.e., containing less than about 10 volume % helium and more typically, less than about 5 % helium by volume). The present invention more particularly relates to processes and systems for recovering helium from low helium-containing feed gases using temperature swing adsorption (TSA) systems and multiple (e.g. two) stage vacuum pressure swing adsorption (VPSA) systems. In preferred embodiments of the invention, the first stage VPSA system is configured to provide regeneration gas for the TSA system, and/or the VPSA second stage tail gas is recycled to the first stage VPSA system.
    Type: Application
    Filed: June 27, 2008
    Publication date: December 31, 2009
    Applicant: Praxair Technology, Inc.
    Inventor: Mohamed Safdar Allie Baksh
  • Patent number: 7537742
    Abstract: This invention discloses an optimum set of adsorbents for use in H2-PSA processes. Each adsorbent bed is divided into four regions; Region 1 contains adsorbent for removing water; Region 2 contains a mixture of strong and weak adsorbents to remove bulk impurities like CO2; Region 3 contains a high bulk density (>38 lbm/ft3) adsorbent to remove remaining CO2; and most of CH4 and CO present in H2 containing feed mixtures; and Region 4 contains adsorbent having high Henry's law constants for the final cleanup of N2 and residual impurities to produce hydrogen at the desired high purity.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: May 26, 2009
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed Safdar Allie Baksh, Mark William Ackley, Frank Notaro
  • Publication number: 20080282891
    Abstract: The present invention generally relates to large capacity (e.g., greater than 350 tons/day O2) vacuum pressure adsorption (VPSA) systems and processes that employ a single train including four beds, at least one feed compressor feeding two beds simultaneously at any given instant in time, and a single vacuum pump. The compressor(s) and the vacuum pump can be utilized 100% of the time. Use of product quality gas for purging is avoided, with about 10-20% improvement in O2 productivity and 5-10% reduction in capital cost expected.
    Type: Application
    Filed: June 3, 2008
    Publication date: November 20, 2008
    Applicant: Praxair Technology, Inc.
    Inventors: Mohamed Safdar Allie Baksh, Andrew Rosinski
  • Patent number: 7396387
    Abstract: The present invention generally relates to large capacity (e.g., greater than 350 tons/day O2) vacuum pressure adsorption (VPSA) systems and processes that employ a single train including four beds, at least one feed compressor feeding two beds simultaneously at any given instant in time, and a single vacuum pump. The compressor(s) and the vacuum pump can be utilized 100% of the time. Use of product quality gas for purging is avoided, with about 10-20% improvement in O2 productivity and 5-10% reduction in capital cost expected.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: July 8, 2008
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed Safdar Allie Baksh, Andrew Rosinski
  • Publication number: 20080148936
    Abstract: The present invention relates to composite structured adsorbents and methods of use therefor. The invention more particularly relates to composite structured adsorbents that can include a multi-channel framework (e.g., monoliths), the channels of the multi-channel framework containing adsorbent beads particles therein, with a channel-to-particle diameter ratio in the range of 1 to 10, more preferably 1 to 7 and even more preferably 1 to 5. In the case of non-spherical particles, the hydraulic diameter is used in the calculation of the channel-to-particle diameter. The composite structured adsorbents of the present invention can be used in various industrial applications, for example in pressure swing adsorption (PSA) or vacuum pressure swing adsorption (VPSA) processes to produce O2 from air.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 26, 2008
    Inventor: Mohamed Safdar Allie Baksh
  • Publication number: 20080006151
    Abstract: Novel polybed VPSA process and system to achieve enhanced O2 recovery are disclosed. The VPSA process comprises using three or more adsorber beds; providing a continuous feed supply gas using a single feed blower to one bed, wherein at any instant during the process, two beds are in an evacuation step and only one bed is in a feed mode; and purging the adsorber beds using two purge gases of different purity. The VPSA cycle may further comprise utilizing a storage device (e.g., a packed or empty equalization tank) to capture void gases during co-current depressurization step of the VPSA cycle, which is used at a later stage for purging and repressurization of the bed. In addition, the VPSA process employs a single feed compressor and two vacuum pumps at 100% utilization. Furthermore, the use of the storage device minimizes the use of product quality gas for purging. About 10-20% improvement in O2 productivity is realized in the new VPSA process.
    Type: Application
    Filed: July 6, 2006
    Publication date: January 10, 2008
    Inventors: Mohamed Safdar Allie Baksh, Andrew Chester Rosinski
  • Patent number: 7294172
    Abstract: A gas recovery system comprising a source of gas having a preselected concentration of a desired component (9), at least one application (1) that adds impurities to said gas, and at least one an adsorption system (6) that purifies said gas to produce a purified gas for re-use in application (1), wherein said at least one adsorption system includes at least one adsorbent bed (A) having at least three layers of adsorbents. A recovery process is also disclosed.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: November 13, 2007
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed Safdar Allie Baksh, Scot Eric Jaynes, Bernard Thomas Neu, James Smolarek, Mark Thomas Emley
  • Patent number: 7276107
    Abstract: The present invention relates to a PSA system using an indexing rotary dual valve regulating a stepping mode of operation that controls a variable bed inlet feed flow rate, controllable pressure between feed lines in different beds of the PSA system and varied output flow rate of product gas such as high purity hydrogen gas.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: October 2, 2007
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed Safdar Allie Baksh, Michael S. Manning, Andrew C. Rosinski, James Smolarek, Alan Barnard Stewart, Bernard Thomas Neu
  • Patent number: 7179324
    Abstract: A three-bed pressure swing adsorption system providing a constant continuous supply gas, preferably containing a hydrogen component, in a multi-step and preferably in a twelve-step, process cycle that can produce a purified gas product, preferably hydrogen, on a constant flow.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: February 20, 2007
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed Safdar Allie Baksh, Andrew C. Rosinski
  • Patent number: 7169210
    Abstract: The present invention relates to a gas recycling system that includes a) a source of gas having a predetermined purity; b) an application system that uses the gas and adds contaminants to the gas; c) an adsorption system for removing the contaminants from the gas to produce a purified gas and a waste gas; d) a gas purity analyzer for measuring the amount of the contaminants in the waste gas; and e) conduits connecting the gas source to the application system, and the application system to the adsorption system.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: January 30, 2007
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed Safdar Allie Baksh, Scot Eric Jaynes, Bernard Thomas Neu, James Smolarek, Mark Thomas Emley
  • Patent number: 7166151
    Abstract: The present invention is a PSA system having at least one vessel that uses a multi-segmented flow distributor to provide a uniform fluid across the adsorbent bed in the vessel.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: January 23, 2007
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed Safdar Allie Baksh, Bernard Thomas Neu, Dariush H. Zadeh
  • Publication number: 20040237789
    Abstract: A gas recovery system comprising a source of gas having a preselected concentration of a desired component (9), at least one application (1) that adds impurities to said gas, and at least one an adsorption system (6) that purifies said gas to produce a purified gas for re-use in application (1), wherein said at least one adsorption system includes at least one adsorbent bed (A) having at least three layers of adsorbents. A recovery process is also disclosed.
    Type: Application
    Filed: January 27, 2004
    Publication date: December 2, 2004
    Inventors: Mohamed Safdar Allie Baksh, Scot Eric Jaynes, Bernard Thomas Neu, James Smolarek, Mark Thomas Emley
  • Publication number: 20040216609
    Abstract: The invention comprises a gas recycling system comprising: a) a source of gas having a predetermined purity (28); b) an application system (6) that uses said gas and adds contaminants to said gas; c) an adsorption system (1) for removing said contaminants from said gas to produce a purified gas, and a waste gas; d) a gas purity analyzer (100) for measuring the amount of said contaminants in said waste gas; e) conduits ((5), (8), (9) (13) and (15) connecting the gas source (4) to said application system, said application system (6) to said adsorption system.
    Type: Application
    Filed: June 23, 2004
    Publication date: November 4, 2004
    Inventors: Mohamed Safdar Allie Baksh, Scot Eric Jaynes, Bernard Thomas Neu, James Smolarek, Mark Thomas Emley