Patents by Inventor Mohamed Swillam

Mohamed Swillam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11966169
    Abstract: A system includes a radiation source, first and second phased arrays, and a detector. The first and second phased arrays include optical elements, a plurality of ports, waveguides, and phase modulators. The optical elements radiate radiation waves. The waveguides guide radiation from a port of the plurality of ports to the optical elements. Phase modulators adjust phases of the radiation waves. One or both of the first and second phased arrays form a first beam and/or a second beam of radiation directed toward a target structure based on the port coupled to the radiation source. The detector receives radiation scattered by the target structure and generates a measurement signal based on the received radiation.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: April 23, 2024
    Assignee: ASML Holding N.V.
    Inventors: Mohamed Swillam, Tamer Mohamed Tawfik Ahmed Elazhary, Stephen Roux, Yuxiang Lin, Justin Lloyd Kreuzer
  • Publication number: 20240077308
    Abstract: A metrology system includes a radiation source, an adjustable diffractive element, an optical system, an optical element, and a processor. The radiation source generates radiation. The adjustable diffractive element diffracts the radiation to generate first and second beams of radiation. The first and second beams have first and second different non-zero diffraction orders, respectively. The optical system directs the first and second beams toward a target structure such that first and second scattered beams of radiation are generated based on the first and second beams, respectively. The metrology system adjusts a phase difference of the first and second scattered beams. The optical element interferes the first and second scattered beams at an imaging detector that generates a detection signal. The processor receives and analyzes the detection signal to determine a property of the target structure based on the adjusted phase difference.
    Type: Application
    Filed: January 4, 2022
    Publication date: March 7, 2024
    Applicant: ASML Holding N.V.
    Inventors: Mohamed SWILLAM, Justin Lloyd KREUZER, Stephen ROUX, Michael Leo NELSON, Muhsin ERALP
  • Publication number: 20230273531
    Abstract: A metrology system comprises a radiation source, an optical element, first and second detectors, an integrated optical device comprising a multimode waveguide, and a processor. The radiation source generates radiation. The optical element directs radiation toward a target to generate scattered radiation from the target. The first detector receives a first portion of the scattered radiation and generates a first detection signal based on the received first portion. The multimode waveguide interferes a second portion of the scattered radiation using modes of the multimode waveguide. The second detector receives the interfered second portion and generates a second detection signal based on the received interfered second portion. The processor receives the first and second detection signals. The processor analyzes the received first portion, the received interfered second portion, and a propagation property of the multimode waveguide. The processor determines the property of the target based on the analysis.
    Type: Application
    Filed: June 29, 2021
    Publication date: August 31, 2023
    Applicant: ASML Holding N.V.
    Inventors: Mohamed SWILLAM, Justin Lloyd KREUZER, Stephen ROUX
  • Publication number: 20230266681
    Abstract: Systems, apparatuses, and methods are provided for determining the alignment of a substrate. An example method can include emitting a multi-wavelength radiation beam including a first wavelength and a second wavelength toward a region of a surface of a substrate. The example method can further include measuring a first diffracted radiation beam indicative of first order diffraction at the first wavelength in response to an irradiation of the region by the multi-wavelength radiation beam. The example method can further include measuring a second diffracted radiation beam indicative of first order diffraction at the second wavelength in response to the irradiation of the region by the multi-wavelength radiation beam. Subsequently, the example method can include generating, based on the measured first set of photons and the measured second set of photons, an electronic signal for use in determining an alignment position of the substrate.
    Type: Application
    Filed: June 9, 2021
    Publication date: August 24, 2023
    Applicant: ASML Holding N.V.
    Inventors: Mohamed SWILLAM, Justin Lloyd KREUZER, Stephen ROUX
  • Publication number: 20230266255
    Abstract: Systems, apparatuses, and methods are provided for detecting a particle on a substrate surface. An example method can include receiving, by a grating structure, coherent radiation from a radiation source. The method can further include generating, by the grating structure, a focused coherent radiation beam based on the coherent radiation. The method can further include transmitting, by the grating structure, the focused coherent radiation beam toward a region of a surface of a substrate. The method can further include receiving, by the grating structure, photons scattered from the region in response to illuminating the region with the focused coherent radiation beam. The method can further include measuring, by a photodetector, the photons received by the grating structure. The method can further include generating, by the photodetector and based on the measured photons, an electronic signal for detecting a particle located in the region of the surface of the substrate.
    Type: Application
    Filed: June 9, 2021
    Publication date: August 24, 2023
    Applicants: ASML Netherlands B.V., ASML Holding N.V.
    Inventors: Ilse VAN WEPEREN, Arjan Johannes Anton BEUKMAN, Mohamed SWILLAM, Justin Lloyd KREUZER, Stephen ROUX
  • Publication number: 20230213868
    Abstract: A system includes an illumination system, an optical element, a switching element and a detector. The illumination system includes a broadband light source that generates a beam of radiation. The dispersive optical element receives the beam of radiation and generates a plurality of light beams having a narrower bandwidth than the broadband light source. The optical switch receives the plurality of light 5 beams and transmits each one of the plurality of light beams to a respective one of a plurality of alignment sensor of a sensor array. The detector receives radiation returning from the sensor array and to generate a measurement signal based on the received radiation.
    Type: Application
    Filed: June 4, 2021
    Publication date: July 6, 2023
    Applicants: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Mohamed SWILLAM, Marinus Petrus REIJNDERS
  • Publication number: 20230213871
    Abstract: A metrology system includes a radiation source, first, second, and third optical systems, and a processor. The first optical system splits the radiation into first and second beams of radiation and impart one or more phase differences between the first and second beams. The second optical system directs the first and second beams toward a target structure to produce first and second scattered beams of radiation. The third optical system interferes the first and second scattered beams at an imaging detector. The imaging detector generates a detection signal based on the interfered first and second scattered beams. The metrology system modulates one or more phase differences of the first and second scattered beams based on the imparted one or more phase differences. The processor analyzes the detection signal to determine a property of the target structure based on at least the modulated one or more phase differences.
    Type: Application
    Filed: May 14, 2021
    Publication date: July 6, 2023
    Applicants: ASML Netherlands B.V., ASML Holding N.V.
    Inventors: Sebastianus Adrianus GOORDEN, Filippo ALPEGGIANI, Simon Reinald HUISMAN, Johannes Jacobus Matheus BASELMANS, Haico Victor KOK, Mohamed SWILLAM, Arjan Johannes Anton BEUKMAN
  • Publication number: 20230059471
    Abstract: A compact sensor apparatus having an illumination beam, a beam shaping system, a polarization modulation system, a beam projection system, and a signal detection system. The beam shaping system is configured to shape an illumination beam generated from the illumination system and generate a flat top beam spot of the illumination beam over a wavelength range from 400 nm to 2000 nm. The polarization modulation system is configured to provide tenability of linear polarization state of the illumination beam. The beam projection system is configured to project the flat top beam spot toward a target, such as an alignment mark on a substrate. The signal detection system is configured to collect a signal beam comprising diffraction order sub-beams generated from the target, and measure a characteristic (e.g., overlay) of the target based on the signal beam.
    Type: Application
    Filed: January 21, 2021
    Publication date: February 23, 2023
    Applicant: ASML Holding N.V.
    Inventors: Mohamed SWILLAM, Tamer Mohamed Tawfik Ahmed Mohamed ELAZHARY, Stephen ROUX, Yevgeniy Konstantinovich SHMAREV
  • Publication number: 20230058714
    Abstract: A system includes an illumination system, an optical element, and a detector. The optical system is implemented on a substrate. The illumination system includes first and second sources and first and second generators. The illumination system generates a beam of radiation. The first and second sources generate respective first and second different wavelength bands. The first and second resonators are optically coupled to respective ones of the first and second sources and narrow respective ones of the first and second wavelength bands. The optical element directs the beam toward a target structure. The detector receives radiation from the target structure and to generate a measurement signal based on the received radiation.
    Type: Application
    Filed: December 8, 2020
    Publication date: February 23, 2023
    Applicants: ASML Netherlands B.V., ASML Holding N.V.
    Inventors: Marinus Petrus REIJNDERS, Mohamed SWILLAM
  • Publication number: 20230008139
    Abstract: A detection system (200) includes an illumination system (210), a first optical system (232), a phase modulator (220), a lock-in detector (255), and a function generator (230). The illumination system is configured to transmit an illumination beam (218) along an illumination path. The first optical system is configured to transmit the illumination beam toward a diffraction target (204) on a substrate (202). The first optical system is further configured to transmit a signal beam including diffraction order sub-beams (222, 224, 226) that are diffracted by the diffraction target. The phase modulator is configured to modulate the illumination beam or the signal beam based on a reference signal. The lock-in detector is configured to collect the signal beam and to measure a characteristic of the diffraction target based on the signal beam and the reference signal. The function generator is configured to generate the reference signal for the phase modulator and the lock-in detector.
    Type: Application
    Filed: November 18, 2020
    Publication date: January 12, 2023
    Applicants: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Mohamed SWILLAM, Simon Reinald HUISMAN, Justin Lloyd KREUZER
  • Publication number: 20220342228
    Abstract: A system includes a radiation source and a phased array. The phased array includes optical elements, waveguides and phase modulators. The phased array generates a beam of radiation. The optical elements radiate radiation waves. The waveguides guide radiation from the radiation source to the optical elements. The phase modulators adjust phases of the radiation waves such that the radiation waves accumulate to form the beam. An amount of incoherence of the beam is based on randomization of the phases.
    Type: Application
    Filed: September 27, 2020
    Publication date: October 27, 2022
    Applicants: ASML Netherlands B.V., ASML Holding N.V.
    Inventors: Irwan Dani SETIJA, Arie Jeffrey DEN BOEF, Mohamed SWILLAM, Arjan Johannes Anton BEUKMAN
  • Publication number: 20220283516
    Abstract: A sensor apparatus includes a sensor chip, an illumination system, a first optical system, a second optical system, and a detector system. The illumination system is coupled to the sensor chip and transmits an illumination beam along an illumination path. The first optical system is coupled to the sensor chip and includes a first integrated optic to configure and transmit the illumination beam toward a diffraction target on a substrate, disposed adjacent to the sensor chip, and generate a signal beam including diffraction order sub-beams generated from the diffraction target. The second optical system is coupled to the sensor chip and includes a second integrated optic to collect and transmit the signal beam from a first side to a second side of the sensor chip. The detector system is configured to measure a characteristic of the diffraction target based on the signal beam transmitted by the second optical system.
    Type: Application
    Filed: August 5, 2020
    Publication date: September 8, 2022
    Applicants: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Mohamed SWILLAM, Stephen ROUX, Tamer Mohamed Tawfik Ah ELAZHARY, Arie Jeffrey DEN BOEF
  • Publication number: 20220268574
    Abstract: A sensor apparatus includes an illumination system, a detector system, and a processor. The illumination system is con-figured to transmit an illumination beam along an illumination path and includes an adjustable optic. The adjustable optic is configured to transmit the illumination beam toward a diffraction target on a substrate that is disposed adjacent to the illumination system. The transmitting generates a fringe pattern on the diffraction target. A signal beam includes diffraction order sub-beams that are diffracted by the diffraction target. The detector system is configured to collect the signal beam. The processor is configured to measure a char-acteristic of the diffraction target based on the signal beam. The adjustable optic is configured to adjust an angle of incidence of the illumination beam on the diffraction target to adjust a periodicity of the fringe pattern to match a periodicity of the diffraction target.
    Type: Application
    Filed: June 30, 2020
    Publication date: August 25, 2022
    Applicant: ASML Holding N.V.
    Inventors: Tamer Mohamed Tawfik Ahmed Mohamed ELAZHARY, Mohamed SWILLAM
  • Publication number: 20210095957
    Abstract: A system includes a radiation source, first and second phased arrays, and a detector. The first and second phased arrays include optical elements, a plurality of ports, waveguides, and phase modulators. The optical elements radiate radiation waves. The waveguides guide radiation from a port of the plurality of ports to the optical elements. Phase modulators adjust phases of the radiation waves. One or both of the first and second phased arrays form a first beam and/or a second beam of radiation directed toward a target structure based on the port coupled to the radiation source. The detector receives radiation scattered by the target structure and generates a measurement signal based on the received radiation.
    Type: Application
    Filed: September 23, 2020
    Publication date: April 1, 2021
    Applicant: ASML Holding N.V.
    Inventors: Mohamed SWILLAM, Tamer Mohamed Tawfik Ahmed Mohamed Elazhary, Stephen Roux, Yuxiang Lin, Justin Lloyd Kreuzer
  • Patent number: 10948627
    Abstract: An infrared subwavelength metasurface lens implements slit width modulation focusing of infrared light into a subwavelength region located within a silicon substrate. The lens includes a metasurface deposited on a surface of the silicon substrate, where the metasurface has multiple discrete copper elements separated by uniformly distributed slits of different widths. The device may also implement refractive index modulation by filling different slits with silicon or air. The infrared subwavelength metasurface lens may be coupled with a thermoelectric generator to form a thermoelectric infrared harvesting device.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: March 16, 2021
    Assignee: The American University in Cairo
    Inventors: Mohamed Swillam, Manar A. Abdel-Galil, Yehea Ismail
  • Publication number: 20210021228
    Abstract: A broadband hyperbolic metamaterial absorber is provided that includes a substrate layer, a plurality of N-doped silicon layers, a plurality of silicon layers, and a silicon grating layer, where the silicon grating layer includes a pattern of through-holes, where the through-holes have a diameter d, a height h, and a periodic separation distance a, where the plurality of N-doped silicon layers and the plurality of silicon layers are arranged in a stack of alternating layers of N-doped silicon layers and silicon layers disposed on the substrate layer, where the silicon grating layer is disposed on the stack of alternating layers of N-doped silicon layers and silicon layers.
    Type: Application
    Filed: October 7, 2020
    Publication date: January 21, 2021
    Inventors: Mohamed Swillam, Ahmed M. Mahmoud, Mai Desouky
  • Publication number: 20190302312
    Abstract: An infrared subwavelength metasurface lens implements slit width modulation focusing of infrared light into a subwavelength region located within a silicon substrate. The lens includes a metasurface deposited on a surface of the silicon substrate, where the metasurface has multiple discrete copper elements separated by uniformly distributed slits of different widths. The device may also implement refractive index modulation by filling different slits with silicon or air. The infrared subwavelength metasurface lens may be coupled with a thermoelectric generator to form a thermoelectric infrared harvesting device.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 3, 2019
    Inventors: Mohamed Swillam, Manar A. Abdel-Galil, Yehea Ismail
  • Publication number: 20190296682
    Abstract: A broadband hyperbolic metamaterial absorber is provided that includes a substrate layer, a plurality of N-doped silicon layers, a plurality of silicon layers, and a silicon grating layer, where the silicon grating layer includes a pattern of through-holes, where the through-holes have a diameter d, a height h, and a periodic separation distance a, where the plurality of N-doped silicon layers and the plurality of silicon layers are arranged in a stack of alternating layers of N-doped silicon layers and silicon layers disposed on the substrate layer, where the silicon grating layer is disposed on the stack of alternating layers of N-doped silicon layers and silicon layers.
    Type: Application
    Filed: May 29, 2019
    Publication date: September 26, 2019
    Inventors: Mohamed Swillam, Ahmed M. Mahmoud, Mai Desouky
  • Publication number: 20190212471
    Abstract: An absorber for energy harvesting is provided comprising a structure of a multilayered N-doped Si/Si hyperbolic metamaterial (HMM) integrated with a sub-hole Si grating, wherein the structure has a tunable absorption peak tunable from 4.5 ?m to 11 ?m through changing the grating parameters.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 11, 2019
    Inventors: Mohamed Swillam, Ahmed M. Mahmoud, Mai Desouky