Patents by Inventor Mohamed T. El-Haddad

Mohamed T. El-Haddad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11592286
    Abstract: System and methods are provided for characterizing an internal surface of a lens using interferometry measurements. Sphere-fitting a distorted radius determines distorted pathlengths. Ray-tracing simulates refraction at all upstream surfaces to determine a cumulative path length. A residual pathlength is scaled by the group-index and rays are propagated based on the phase-index. After aspheric surface fitting, a corrected radius is determined. To estimate a glass type for the lens, a thickness between focal planes of the lens surfaces is determined using RCM measurements. Then, for both surfaces, the surface is positioned into focus, interferometer path length matching is performed, a reference arm is translated to stationary phase point positions for three wavelengths to determine three per-color optical thicknesses, and ray-tracing is performed. A glass type is identified by minimizing an error function based on optical parameters of the lens and parameters determined from known glass types from a database.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: February 28, 2023
    Assignee: Vanderbilt University
    Inventors: Yuankai Tao, Mohamed T. El-Haddad
  • Publication number: 20220090913
    Abstract: System and methods are provided for characterizing an internal surface of a lens using interferometry measurements. Sphere-fitting a distorted radius determines distorted pathlengths. Ray-tracing simulates refraction at all upstream surfaces to determine a cumulative path length. A residual pathlength is scaled by the group-index and rays are propagated based on the phase-index. After aspheric surface fitting, a corrected radius is determined. To estimate a glass type for the lens, a thickness between focal planes of the lens surfaces is determined using RCM measurements. Then, for both surfaces, the surface is positioned into focus, interferometer path length matching is performed, a reference arm is translated to stationary phase point positions for three wavelengths to determine three per-color optical thicknesses, and ray-tracing is performed. A glass type is identified by minimizing an error function based on optical parameters of the lens and parameters determined from known glass types from a database.
    Type: Application
    Filed: December 3, 2021
    Publication date: March 24, 2022
    Inventors: Yuankai Tao, Mohamed T. El-Haddad
  • Publication number: 20220061929
    Abstract: Systems and methods for image-based guidance using automated instrument tracking. An en face image frame, generated from en face image data captured by a first imaging system (e.g., an SER imaging system), is analyzed to determine a location of an instrument in the first imaging plane. A control signal is then generated for the movement stage to control the scanning movement of a depth-based imaging system (e.g., an OCT imaging system) based on the determined location of the instrument. In some implementations, a trained neural-network is used to determine the location of the instrument based on the en face image frame and, in some implementations, the control signal adjusts the speed of the scanning movement to capture image data at a higher density7 at areas corresponding to the determined location of the instrument.
    Type: Application
    Filed: January 10, 2020
    Publication date: March 3, 2022
    Inventors: Yuankai Tao, Mohamed T. El-Haddad
  • Patent number: 11221211
    Abstract: System and methods are provided for characterizing an internal surface of a lens using interferometry measurements. Sphere-fitting a distorted radius determines distorted pathlengths. Ray-tracing simulates refraction at all upstream surfaces to determine a cumulative path length. A residual pathlength is scaled by the group-index and rays are propagated based on the phase-index. After aspheric surface fitting, a corrected radius is determined. To estimate a glass type for the lens, a thickness between focal planes of the lens surfaces is determined using RCM measurements. Then, for both surfaces, the surface is positioned into focus, interferometer path length matching is performed, a reference arm is translated to stationary phase point positions for three wavelengths to determine three per-color optical thicknesses, and ray-tracing is performed. A glass type is identified by minimizing an error function based on optical parameters of the lens and parameters determined from known glass types from a database.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: January 11, 2022
    Assignee: Vanderbilt University
    Inventors: Yuankai Tao, Mohamed T. El-Haddad
  • Publication number: 20210088327
    Abstract: System and methods are provided for characterizing an internal surface of a lens using interferometry measurements. Sphere-fitting a distorted radius determines distorted pathlengths. Ray-tracing simulates refraction at all upstream surfaces to determine a cumulative path length. A residual pathlength is scaled by the group-index and rays are propagated based on the phase-index. After aspheric surface fitting, a corrected radius is determined. To estimate a glass type for the lens, a thickness between focal planes of the lens surfaces is determined using RCM measurements. Then, for both surfaces, the surface is positioned into focus, interferometer path length matching is performed, a reference arm is translated to stationary phase point positions for three wavelengths to determine three per-color optical thicknesses, and ray-tracing is performed. A glass type is identified by minimizing an error function based on optical parameters of the lens and parameters determined from known glass types from a database.
    Type: Application
    Filed: January 25, 2019
    Publication date: March 25, 2021
    Inventors: Yuankai Tao, Mohamed T. El-Haddad
  • Publication number: 20190384006
    Abstract: Fiber optic methods and systems angularly and spatially offset back reflections away from numerical apertures of a core and inner cladding of a double-clad fiber (DCF) that transmits light to downstream optical interfaces. Back reflections from near and/or far downstream optical interfaces are offset away from the numerical aperture of the core and inner cladding by (1) adjusting an axial length between the DCF end face and the near and/or far reflective optical interfaces, and (2) angling the near and/or the far optical interfaces to angularly and spatially displace back reflections away from the core and inner cladding. No-core fiber fusion spliced to the DCF, or a wedge prism attached to the DCF by index matched gel may be used to adjust the axial lengths and angled the reflections.
    Type: Application
    Filed: January 26, 2018
    Publication date: December 19, 2019
    Inventors: Yuankai Tao, Mohamed T. El-Haddad, Joseph D. Malone
  • Patent number: 10045831
    Abstract: Systems and methods are provided for a microscope-integrated intraoperative scanner system having automated tracking of an instrument tip. A scanning mirror is configured such that a field of view of the OCT system is determined by a position or orientation of the scanning mirror. A drive system is configured to control the scanning mirror. Camera assemblies are configured to determine respective two-dimensional projections of the positions of markers attached to a surgical instrument. A stereo vision system is configured to determine a three-dimensional location of each of the markers from the determined two-dimensional positions. An instrument tracking component is configured to determine a position of a working tip of the surgical instrument according to the determined three-dimensional locations. A drive control is configured to instruct the drive system to adjust the scanner mirror to control the field of view of the OCT system.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: August 14, 2018
    Assignee: The Cleveland Clinic Foundation
    Inventors: Mohamed T. El-Haddad, Yuankai K. Tao
  • Publication number: 20160324593
    Abstract: Systems and methods are provided for a microscope-integrated intraoperative scanner system having automated tracking of an instrument tip. A scanning mirror is configured such that a field of view of the OCT system is determined by a position or orientation of the scanning mirror. A drive system is configured to control the scanning mirror. Camera assemblies are configured to determine respective two-dimensional projections of the positions of markers attached to a surgical instrument. A stereo vision system is configured to determine a three-dimensional location of each of the markers from the determined two-dimensional positions. An instrument tracking component is configured to determine a position of a working tip of the surgical instrument according to the determined three-dimensional locations. A drive control is configured to instruct the drive system to adjust the scanner mirror to control the field of view of the OCT system.
    Type: Application
    Filed: May 9, 2016
    Publication date: November 10, 2016
    Inventors: Mohamed T. El-Haddad, Yuankai K. Tao