Patents by Inventor Mohammad Al-Haj Ali

Mohammad Al-Haj Ali has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220348702
    Abstract: The polymerization process comprises polymerizing an olefin monomer and a comonomer in the presence of a polymerization catalyst in a polymerization step conducted in a polymerization reactor in a solvent to produce a solution comprising a polymer of the olefin monomer and the comonomer. The polymerization process comprises withdrawing an exhaust stream of the solution from the polymerization reactor in a withdrawing step. The polymerization process comprises separating the exhaust stream to a first primary stream and a primary concentrated solution stream in a first primary separation step, wherein the first primary stream comprises hydrocarbons and polymer. The polymerization process comprises separating the first primary stream to a second primary stream and a third primary stream in a second primary separation step, wherein the second primary stream comprises dissolved polymer and the third primary stream comprises majority of the hydrocarbons.
    Type: Application
    Filed: May 18, 2020
    Publication date: November 3, 2022
    Inventors: Mohammad Al-haj Ali, Mubashar Sattar, Noureddine Ajellal, Henry Sleijster, Charlotta Weber
  • Patent number: 11440983
    Abstract: A process for copolymerizing ethylene and at least one C3 to C8 alpha olefin to obtain an ethylene-C3 to C8 alpha olefin copolymer, the process comprising a) copolymerizing ethylene and at least one C3 to C8 alpha olefin in a solvent in a solution polymerization reactor to obtain an intermediate polymer solution, b) discharging an effluent stream from the intermediate polymer solution into a heat exchanger, c) setting the temperature of the effluent stream in the heat exchanger to obtain a heated effluent stream, d) feeding the heated effluent stream to a flash separation, e) separating at least a part of the ethylene-C3 to C8 alpha olefin copolymer in the flash separation, characterized by feeding an inert hydrocarbon fulfilling 90° C.<T(BP)<130° C. to the solution polymerization reactor; and/or accumulating an inert hydrocarbon fulfilling 90° C.<T(BP)<130° C. during the polymerization reaction; and/or feeding an inert hydrocarbon fulfilling 90° C.<T(BP)<130° C.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: September 13, 2022
    Assignee: Borealis AG
    Inventors: Mohammad Al-Haj Ali, Henry Sleijster
  • Patent number: 11400427
    Abstract: The present invention is concerned with a process for providing a homogeneous particle-containing slurry comprising the steps of: (a) providing a vessel comprising at least one impeller rotating around a vertical axis of the vessel, wherein a rotational speed n1 of the at least one impeller is higher than nmin according to equation (1), the vessel further comprising an inlet and an outlet; (b) introducing a particle-containing slurry into the vessel or introducing components forming the particle-containing slurry into the vessel; (c) rotating the at least one impeller at least around the vertical axis for homogenizing and/or maintaining a homogeneous particle distribution within the slurry; (d) withdrawing the homogeneous particle-containing slurry via the outlet; (e) reducing the rotational speed n1 of the at least one impeller to a reduced rotational speed nred, whereas nred is lower than n1 and higher or equal gas inlet than nmin according to equation (1): n min = Sv 0.1 ? D p 0.
    Type: Grant
    Filed: November 28, 2019
    Date of Patent: August 2, 2022
    Assignee: BOREALIS AG
    Inventors: Mohammad Al-Haj Ali, Kauno Alastalo
  • Publication number: 20220072451
    Abstract: The current application is related to a separating device for separating volatile compounds from a polymer reaction mixture comprising a gravimetric separator, having a gravimetric vessel, an inlet for feeding the polymer reaction mixture, a first outlet located in the lower part of the gravimetric vessel for withdrawing a first polymer-rich stream, and a second outlet located in the upper part of the gravimetric vessel for withdrawing a first polymer-lean stream; and a flash separator having a flash vessel, a first inlet for feeding a second polymer-lean stream split from the first polymer-lean stream, a first outlet located at the lower part of the flash vessel for withdrawing a liquid stream, and a second outlet located at the upper part of the flash vessel for withdrawing a gaseous stream, wherein the second outlet of the separator vessel is fluidly connected to the first inlet of the flash vessel.
    Type: Application
    Filed: January 24, 2020
    Publication date: March 10, 2022
    Inventors: Mohammad Al-Haj Ali, Kauno Alastalo
  • Publication number: 20220032206
    Abstract: The present invention is concerned with a separator comprising a vessel, a first inlet, a second inlet, a first outlet, a second outlet, and a separation device located downstream of the first outlet, wherein the separation device comprises two outlets, whereas one outlet of the separation device is fluidly connected to the second inlet of the vessel.
    Type: Application
    Filed: November 28, 2019
    Publication date: February 3, 2022
    Inventors: Mohammad Al-Haj Ali, Mubashar Saltar
  • Publication number: 20210339215
    Abstract: The present invention is concerned with a process for providing a homogeneous particle-containing slurry comprising the steps of: (a) providing a vessel comprising at least one impeller rotating around a vertical axis of the vessel, wherein a rotational speed n1 of the at least one impeller is higher than nmin according to equation (1), the vessel further comprising an inlet and an outlet; (b) introducing a particle-containing slurry into the vessel or introducing components forming the particle-containing slurry into the vessel; (c) rotating the at least one impeller at least around the vertical axis for homogenizing and/or maintaining a homogeneous particle distribution within the slurry; (d) withdrawing the homogeneous particle-containing slurry via the outlet; (e) reducing the rotational speed n1 of the at least one impeller to a reduced rotational speed nred, whereas nred is lower than n1 and higher or equal gas inlet than nmin according to equation (1): n min = S ? v 0.1 ? D p 0.
    Type: Application
    Filed: November 28, 2019
    Publication date: November 4, 2021
    Inventors: Mohammad Al-Haj Ali, Kauno Alastalo
  • Patent number: 11149096
    Abstract: The present invention relates to a process for removing hydrocarbons comprising the steps of: (A) passing a stream of a solution into a separator wherein a liquid phase comprising polymer and a vapor phase coexist; (B) withdrawing a vapor stream and a concentrated solution stream from the separator; (C) passing at least a part of the vapour stream into a first fractionator; (D) withdrawing a first overhead stream and a first bottom stream from the first fractionator; (E) passing the first bottom stream to a second fractionator; (F) withdrawing a second overhead stream and a second bottom stream from the second fractionator; characterized in that at least a part of the second overhead stream is withdrawn as a purge stream.
    Type: Grant
    Filed: November 22, 2018
    Date of Patent: October 19, 2021
    Assignee: BOREALIS AG
    Inventors: Mohammad Al-Haj Ali, Erik Eriksson, Guhan Mathivanan, Jukka Räsänen, Henry Sleijster, Sameer Vijay, Samuli Zitting
  • Patent number: 11111324
    Abstract: The present invention relates to a process and apparatus for withdrawing polymer agglomerates from a fluidised bed polymerisation reactor, the polymerisation reactor comprising a bottom zone having a generally conical shape and no fluidisation grid. The agglomerates are withdrawn by using an agglomerate trap below the bottom zone. A value of a process variable indicative of the content of agglomerates in the agglomerate trap is measured and the opening time of the valves transferring polymer to and from the agglomerate trap is adjusted based on the measured value.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: September 7, 2021
    Assignee: Borealis AG
    Inventors: Mohammad Al-Haj Ali, Vasileios Kanellopoulos, Apostólos Krallis, Klaus Nyfors, Pablo Ivan Aguayo Arellano, Gunter Weickert, Eric-Jan Prinsen
  • Patent number: 11078305
    Abstract: The present invention relates to a method of reducing the entrainment of polymer in the polymer-lean liquid phase in a separator, comprising the steps of: (i) Selecting the diameter of the polymer droplets in the polymer solution entering the separator; (ii) Determining the traveling time of the polymer droplets in the separator; and (iii) Adjusting the residence time of the polymer-dense phase in the separator to be at least the traveling time of the polymer droplets, a solution polymerization process using said method for reducing the entrainment of polymer in the polymer-lean liquid phase in the separator and the use of said method for determining the minimum residence time of the polymer solution in the separator required to ensure efficient separation of a polymer solution into a polymer-lean phase and a polymer-rich phase.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: August 3, 2021
    Assignee: BOREALIS AG
    Inventor: Mohammad Al-Haj Ali
  • Patent number: 11034784
    Abstract: A process for reducing the volatile organic compound content of granular plastomers having a density of equal to or lower than 883 kg/m3 and a MFR2 of 100.0 g/10 min or lower (ISO 1133 at 2.16 kg load and 190° C.), to below 65 ppm (VOC, VDA277), the process comprising the steps of providing a granular raw plastomer in a treatment vessel, the granular raw plastomer having a density of equal to or lower than 883 kg/m3, and a MFR2 of 100.0 g/10 min or lower (ISO 1133 at 2.16 kg load and 190° C.), and a volatile organic compound content (VOC, VDA277) of above 150 ppm, subjecting said granular raw plastomer to a gasflow within the range of 30 m3/(h t) to 150 m3/(h t) for an aeration time of less than 96 hours, whereby the gas has a minimum temperature of at least 26° C. measured at a gas inlet of the treatment vessel and a maximum temperature of 4° C. below the Vicat temperature (10 N, ISO 306) of the granular raw plastomer or 35° C.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: June 15, 2021
    Assignee: BOREALIS AG
    Inventors: Mohammad Al-Haj Ali, Michiel Bergstra, Stefan Hochradl, Velichko Hristov, Alexander Standler
  • Publication number: 20210171677
    Abstract: The present invention relates to a process for removing hydrocarbons comprising the steps of: (A) passing a stream of a solution into a separator wherein a liquid phase comprising polymer and a vapour phase coexist; (B) withdrawing a vapour stream and a concentrated solution stream from the separator; (C) passing at least a part of the vapour stream into a first fractionator; (D) withdrawing a first overhead stream and a first bottom stream from the first fractionator; (E) passing the first overhead stream to a second fractionator; (F) withdrawing a second overhead stream and a second bottom stream from the second fractionator; (G) passing the second overhead stream to a third fractionator; (H) withdrawing a third overhead stream and a third bottom stream from the third fractionator; characterised in that at least a part of the third bottom stream is withdrawn as a purge stream.
    Type: Application
    Filed: November 22, 2018
    Publication date: June 10, 2021
    Inventors: Mohammad AL-HAJ ALI, Erik ERIKSSON, Guhan MATHIVANAN, Jukka RÄSÄNEN, Henry SLEIJSTER, Sameer VIJAY, Samuli ZITTING
  • Patent number: 10988555
    Abstract: The present invention is directed to a process for separating an olefin copolymer from volatile gases using a flash separator. The flash separator can be used with a solution or high pressure process. The mass transport of volatile gases from the viscous polymer melt is increased.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: April 27, 2021
    Assignee: BOREALIS AG
    Inventors: Vasileios Kanellopoulos, Mohammad Al-Haj Ali, Apostolos Krallis
  • Publication number: 20210108007
    Abstract: The present invention relates to a process for reducing the volatile organic compound (VOC) content of plastomers the process comprising the steps of subjecting the plastomer in granular form containing VOCs which is contained in an aeration vessel to a gasflow, and withdrawing granular plastomer from the aeration vessel which has a lower content of VOCs, wherein the average particle size of the granular plastomer is greater than 2.5 mm, preferably greater than 2.7 mm, more preferably greater than 3.0 mm, wherein the gas has a minimum temperature of at least 26° C. measured at a gas inlet of the aeration vessel, and a maximum temperature of 4° C. below the Vicat temperature (10N, ISO 306) of the granular plastomer or 35° C. measured at the gas inlet of the aeration vessel, whatever value is lower, and wherein at least a part of the withdrawn granular plastomer is recirculated to the aeration vessel.
    Type: Application
    Filed: May 28, 2019
    Publication date: April 15, 2021
    Inventors: Mohammad Al-Haj Ali, Michiel Bergstra, Charlotta Weber, Gert Stijnen
  • Publication number: 20210095058
    Abstract: The invention relates to a process for removal of volatile components from an olefin polymer, the process carried out in an extruder comprising at least one vacuum degassing zone, said process comprising the steps of: (a) introducing a stream of an olefin polymer into the extruder; (b) extruding the olefin polymer in the extruder at a temperature which is higher than the melting temperature of the olefin polymer but lower than the decomposition temperature of the olefin polymer, thereby producing an olefin polymer melt having reduced amount of volatile components, wherein the process in the extruder has a residence time distribution broadness (?2) in the range of 800 to 4000 as define by equation (1) wherein: ?2 is the residence time distribution broadness, T is the mean residence time, t is the interval of residence time a fluid element of the olefin polymer spends in the extruder, E(t) is the residence time distribution function, and wherein the process optionally comprises a step (c) where the melt of the
    Type: Application
    Filed: May 25, 2018
    Publication date: April 1, 2021
    Inventors: Velichko Hristov, Mohammad Al-Haj Ali
  • Publication number: 20210024669
    Abstract: Process for reducing the volatile organic compound content of plastomer having a density of equal to or lower than 883 kg/m3 and—a MFR2 of 100.0 g/l 0 min or lower (ISO 1133 at 2.16 kg load and 190° C.); to below 65 ppm(VOC, VDA277), the process comprising the steps of a) providing raw plastomer in granular form, the raw plastomer having a density of equal to or lower than 883 kg/m3; and a MFR2 of 100.0 g/10 min or lower (ISO 1133 at 2.16 kg load and 190° C.); and a volatile organic compound content (VOC, VDA277) of above 150 ppm, and the granules having an average D50 diameter of 2.5 to 4.5 mm b) subjecting said granular raw plastomer to at least one intensive hydrodynamic regime at a minimum temperature of at least 20° C. and a maximum temperature of 4° C. below the Vicat temperature (10 N, ISO 306) of the granular raw plastomer or 35° C., whatever value is lower, with the temperature measured at the gas inlet to the fast-fluidization regime, c) recovering the granular plastomer.
    Type: Application
    Filed: January 15, 2019
    Publication date: January 28, 2021
    Inventors: Mohammad Al-Haj Ali, Vasileios Kanellopoulos, Michiel Bergstra
  • Publication number: 20200369806
    Abstract: The present invention relates to a process and apparatus for withdrawing polymer agglomerates from a fluidised bed polymerisation reactor, the polymerisation reactor comprising a bottom zone having a generally conical shape and no fluidisation grid. The agglomerates are withdrawn by using an agglomerate trap below the bottom zone. A value of a process variable indicative of the content of agglomerates in the agglomerate trap is measured and the opening time of the valves transferring polymer to and from the agglomerate trap is adjusted based on the measured value.
    Type: Application
    Filed: December 15, 2016
    Publication date: November 26, 2020
    Inventors: Mohammad AL-HAJ ALI, Vasileios KANELLOPOULOS, Apostolos KRALLIS, Klaus NYFORS, Pablo Ivan AGUAYO ARELLANO, Gunter Weickert, Eric-Jan PRINSEN
  • Patent number: 10829610
    Abstract: The present invention deals with a process for polymerising olefins in a solution and withdrawing a stream of the solution from the polymerisation reactor and passing it to a sequence of heating steps. The heated solution is passed to a separation step, which is conducted at a pressure of no more than 15 bar and in which separation step a liquid phase comprising the polymer and a vapour phase coexist. A vapour stream and a concentrated solution stream comprising the polymer are withdrawn from the separation step. At least a part of the vapour stream is passed to the first polymerisation reactor, to the second polymerisation reactor or to both.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: November 10, 2020
    Assignee: BOREALIS AG
    Inventors: Mohammad Al-Haj Ali, Michiel Bergstra, Erik Eriksson, Guhan Mathivanan, Jukka Räsänen, Henry Sleijster, Sameer Vijay, Christof Wurnitsch, Samuli Zitting, Vasileios Kanellopoulos, Jani Aho
  • Publication number: 20200325257
    Abstract: A process for copolymerizing ethylene and at least one C3 to C8 alpha olefin to obtain an ethylene-C3 to C8 alpha olefin copolymer, the process comprising a) copolymerizing ethylene and at least one C3 to C8 alpha olefin in a solvent in a solution polymerization reactor to obtain an intermediate polymer solution, b) discharging an effluent stream from the intermediate polymer solution into a heat exchanger, c) setting the temperature of the effluent stream in the heat exchanger to obtain a heated effluent stream, d) feeding the heated effluent stream to a flash separation, e) separating at least a part of the ethylene-C3 to C8 alpha olefin copolymer in the flash separation, characterized by feeding an inert hydrocarbon fulfilling 90° C.<T(BP)<130° C. to the solution polymerization reactor; and/or accumulating an inert hydrocarbon fulfilling 90° C.<T(BP)<130° C. during the polymerization reaction; and/or feeding an inert hydrocarbon fulfilling 90° C.<T(BP)<130° C.
    Type: Application
    Filed: May 22, 2018
    Publication date: October 15, 2020
    Inventors: Mohammad Al-Haj Ali, Henry Sleijster
  • Publication number: 20200277413
    Abstract: The present invention relates to a process for removing hydrocarbons comprising the steps of: (A) passing a stream of a solution into a separator wherein a liquid phase comprising polymer and a vapour phase coexist; (B) withdrawing a vapour stream and a concentrated solution stream from the separator; (C) passing at least a part of the vapour stream into a first fractionator; (D) withdrawing a first overhead stream and a first bottom stream from the first fractionator; (E) passing the first bottom stream to a second fractionator; (F) withdrawing a second overhead stream and a second bottom stream from the second fractionator; characterised in that at least a part of the second overhead stream is withdrawn as a purge stream.
    Type: Application
    Filed: November 22, 2018
    Publication date: September 3, 2020
    Inventors: Mohammad Al-Haj Ali, Erik Eriksson, Guhan Mathivanan, Jukka Räsänen, Henry Sleijster, Sameer Vijay, Samuli Zitting
  • Patent number: 10759880
    Abstract: A process for producing a polymer composition comprising the steps (A) to (M) as recited herein, involving the polymerization, in a polymerization reactor of a first polymer, a first stream thereof being passed into a first separator wherein a first liquid phase comprising the polymer and a first vapor phase coexist; withdrawing a first vapor stream and a first concentrated solution stream comprising the polymer from the first separator, passing at least a part of the first vapor stream to a first fractionator; withdrawing a first overhead stream and a first bottom stream from the first fractionator; recovering at least a part of the first overhead stream as a first recycle stream and passing it to the polymerization reactor; passing the first concentrated solution stream from the first separator to a second separator, wherein a second liquid phase comprising the polymer and a second vapor phase coexist; passing at least a part of the second vapor stream to a second fractionator; withdrawing a second overhead
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: September 1, 2020
    Assignee: Borealis AG
    Inventors: Mohammad Al-Haj Ali, Erik Eriksson, Guhan Mathivanan, Henry Sleijster, Sameer Vijay, Christof Wurnitsch, Samuli Zitting