Patents by Inventor Mohammad Aslam

Mohammad Aslam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5602285
    Abstract: Substituted phenethanol ethers are prepared in useful yields by the etherification of corresponding substituted phenethyl alcohols with aliphatic primary alcohols. The etherification is carried out by reacting a substituted phenethyl alcohol with an aliphatic primary alcohol in the presence of an acid catalyst at a temperature of at least about 75.degree. C.
    Type: Grant
    Filed: December 23, 1994
    Date of Patent: February 11, 1997
    Assignee: Hoechst Celanese Corp.
    Inventors: John R. Durrwachter, Humberto Ramos, Jr., Mohammad Aslam
  • Patent number: 5600009
    Abstract: The palladium-catalyzed coupling of aryl and vinyl halides with vinylic compounds is disclosed. A preferred embodiment relating to the palladium catalyzed coupling of 4-substituted and 6-substituted-2-methoxynaphthalene to form nabumetone is also disclosed. The beauty of this novel reaction is that methylvinylketone, normally employed by the art directly as-is for the preparation of nabumetone, is formed in situ. We have discovered a mechanism to take advantage of the in situ formation of methylvinylketone, thus avoiding the use of expensive, toxic, and unstable methyl vinyl ketone feed. This reaction may be employed for a variety of pharmaceutically active and non-pharmaceutical compounds.
    Type: Grant
    Filed: April 9, 1996
    Date of Patent: February 4, 1997
    Assignee: Hoechst Celanese Corporation
    Inventors: John F. Fritch, Mohammad Aslam, Dora E. Rios, Joel C. Smith
  • Patent number: 5563300
    Abstract: The present invention provides a unique and novel way of producing carbinols such as 4-hydroxyphenylmethylcarbinol (HPMC). In this new process, a ketone such as 4-hydroxyacetophenone (4-HAP) is heated under suitable hydrogenation conditions of temperature and pressure in the presence of a suitable catalyst and a basic material, and for a sufficient period of time to form HPMC.
    Type: Grant
    Filed: December 7, 1995
    Date of Patent: October 8, 1996
    Assignee: Hoechst Celanese Corporation
    Inventors: James R. Sounik, Graham N. Mott, Charles B. Hilton, Mohammad Aslam
  • Patent number: 5526703
    Abstract: A force detecting microsensor comprises a single crystal Si substrate, a single crystal cone formed on the substrate and a resilient electrode mounted above the tip of the Si cone. The space between the tip of the Si cone and the resilient electrode is maintained in a vacuum environment and the distance between the tip and the resilient anode is in the order of a few atomic diameters. The tunneling effect of electrons occurs between the tip of the Si cone and the resilient electrode when a potential is applied to the resilient electrode and the Si cone tip. The resilient electrode deflects as a result of the force acting on the microsensor. The deflection of the resilient electrode alters the electrical characteristics between the resilient electrode and the Si cone tip. The changes in the electrical characteristics can be measured to determine the level of force acting on the microsensor.
    Type: Grant
    Filed: August 21, 1992
    Date of Patent: June 18, 1996
    Assignee: Smiths Industries Aerospace & Defense Systems, Inc.
    Inventors: Mohammad Aslam, Michael D. Olinger, Jerry L. Page
  • Patent number: 5488350
    Abstract: Novel structures are provided including laminated layers of the diamond film in different patterns for conducting, generating and/or absorbing thermal energy. In particular, a thermal sensor/heater is shown including a doped electrically conductive diamond film layer encapsulated by layers of undoped electrically insulative layers on a silicon wafer. Also, a GaAs/Si on diamond laminate structure is provided in which the diamond film acts as a substrate and a heat sink. Notably, the diamond film structures are characterized by their high thermal conductivity, high chemical resistance, and high hardness/wear resistance due to the properties of the diamond films.
    Type: Grant
    Filed: January 7, 1994
    Date of Patent: January 30, 1996
    Assignee: Michigan State University
    Inventors: Mohammad Aslam, James V. Beck
  • Patent number: 5474808
    Abstract: Methods for seeding and growing diamond films on planar and non-planar surfaced substrates and also for patterning the diamond films include mixing submicron diameter diamond particles and binder particles in carriers such as photoresist or water, and applying the mixture to a substrate surface. Treatment of the substrate by chemical vapor deposition then removes the carrier and grows the dispersed diamond particles into a diamond film. Notably, diamond particles having an average size of 25 nanometers form a particularly desirable mixture since the particles do not tend to settle out of the mixture, and also since these particles result in smooth diamond films. The mixtures can be applied onto non-planar surfaces by spraying, dipping, or dispensing and jet writing, and can be applied to planar and non-planar surfaces as a complete coating, as a line, or as a pattern.
    Type: Grant
    Filed: January 7, 1994
    Date of Patent: December 12, 1995
    Assignee: Michigan State University
    Inventor: Mohammad Aslam
  • Patent number: 5424241
    Abstract: A force detecting microsensor comprises a single crystal Si substrate, a single crystal cone formed on the substrate and a resilient electrode mounted above the tip of the Si cone. The space between the tip of the Si cone and the resilient electrode is maintained in a vacuum environment and the distance between the tip and the resilient anode is in the order of a few atomic diameters. The tunneling effect of electrons occurs between the tip of the Si cone and the resilient electrode when a potential is applied to the resilient electrode and the Si cone tip. The resilient electrode deflects as a result of the force acting on the microsensor. The deflection of the resilient electrode alters the electrical characteristics between the resilient electrode and the Si cone tip. The changes in the electrical characteristics can be measured to determine the level of force acting on the microsensor.
    Type: Grant
    Filed: June 14, 1994
    Date of Patent: June 13, 1995
    Assignee: Smiths Industries Aerospace & Defense Systems, Inc.
    Inventors: Mohammad Aslam, Michael D. Olinger, Jerry L. Page
  • Patent number: 5413668
    Abstract: Methods for making mechanical and micro-electromechanical devices (a) forming a mold having a base and metallic walls defining a molding space therebetween, the base being exposed between the metallic walls and either being capable of or having a nucleating upper surface capable of nucleating the deposition of a structural material which does not nucleate on or adhere to the metallic walls at conditions of deposition; (b) depositing a structural material onto either the nucleating upper surface or base and filling to a predetermined height to form a strong solid body; and (c) removing the metallic walls, leaving free-standing, solid body walls of structural material attached to the base; another embodiment of the method may include step (a) and steps (b) filling the molding space with a diamond-nucleating material; (c) consolidating the diamond-nucleating material so as to form a strong solid body; and (d) removing the metallic walls, and thereby freeing the solid body, by dissolving the metallic walls with a
    Type: Grant
    Filed: October 25, 1993
    Date of Patent: May 9, 1995
    Assignee: Ford Motor Company
    Inventors: Mohammad Aslam, Michael A. Tamor
  • Patent number: 5344980
    Abstract: Novel 4-substituted acetophenone anils and methods for preparing 1,3,5-tris(4'-hydroxyphenyl)benzenes from 4-substituted acetophenones such as 4-hydroxyacetophenones or, from substituted 4-hydroxyacetophenone-anils such as 4-hydroxyacetophenone-anil by reacting the 4-substituted acetophenone or corresponding anil with an aniline derivative.
    Type: Grant
    Filed: November 23, 1993
    Date of Patent: September 6, 1994
    Assignee: Hoechst Celanese Corp.
    Inventors: Mohammad Aslam, William Basinger
  • Patent number: 5300698
    Abstract: Novel 4-substituted acetophenone anils and methods for preparing 1,3,5-tris(4'-hydroxyphenyl)benzenes from 4-substituted acetophenones such as 4-hydroxyacetophenones or, from substituted 4-hydroxyacetophenone-anils such as 4-hydroxyacetophenone-anil by reacting the 4-substituted acetophenone or corresponding anil with an aniline derivative.
    Type: Grant
    Filed: May 27, 1993
    Date of Patent: April 5, 1994
    Assignee: Hoechst Celanese Corporation
    Inventors: Mohammad Aslam, William Basinger
  • Patent number: 5247124
    Abstract: A process for preparing a substituted styrene by reacting a bisarylalkyl ether in the presence of an acid catalyst is disclosed. The process is preferably used for the preparation of 4-acetoxystyrene from 4,4'-(oxydiethylidene)bisphenol diacetate and 4-methoxystyrene from 4,4'-(oxydiethylidene)bisphenol dimethyl ether. A process for preparing a bisarylalkyl ether by reacting a corresponding arylalkanol in the presence of an acid catalyst is also disclosed.
    Type: Grant
    Filed: August 25, 1992
    Date of Patent: September 21, 1993
    Assignee: Hoechst Celanese Corporation
    Inventors: Mohammad Aslam, Brad L. Smith, George Kvakovszky
  • Patent number: 5225603
    Abstract: An intermediate for the manufacture of nabumetone, 4-(6'-methoxy-2'-naphthyl)-3-buten-2-one, is prepared by contacting 2-bromo-6-methoxynaphphalene with methyl vinyl ketone in the presence of a palladium catalyst at from about 50.degree. C. to about 200.degree. C. for a time sufficient to cause substantially complete reaction to occur.
    Type: Grant
    Filed: June 17, 1988
    Date of Patent: July 6, 1993
    Assignee: Hoechst Celanese Corporation
    Inventors: Mohammad Aslam, Varadaraj Elango
  • Patent number: 5210278
    Abstract: A process for preparing a substituted styrene by reacting a bisarylalkyl ether in the presence of an acid catalyst is disclosed. The process is preferably used for the preparation of 4-acetoxystyrene from 4,4'-(oxydiethylidene)bisphenol diacetate and 4-methoxystyrene from 4,4'-(oxydiethylidene)bisphenol dimethyl ether. A process for preparing a bisarylalkyl ether by reacting a corresponding arylalkanol in the presence of an acid catalyst is also disclosed.
    Type: Grant
    Filed: August 25, 1992
    Date of Patent: May 11, 1993
    Assignee: Hoechst Celanese Corporation
    Inventors: Mohammad Aslam, Brad L. Smith, George Kvakovszky
  • Patent number: 5194672
    Abstract: A process for preparing a substituted styrene by reacting a bisarylalkyl ether in the presence of an acid catalyst is disclosed. The process is preferably used for the preparation of 4-acetoxystyrene from 4,4'-(oxydiethylidene)bisphenol diacetate and 4-methoxystyrene from 4,4'-(oxydiethylidene)bisphenol dimethyl ether. A process for preparing a bisarylalkyl ether by reacting a corresponding arylalkanol in the presence of an acid catalyst is also disclosed.
    Type: Grant
    Filed: May 14, 1991
    Date of Patent: March 16, 1993
    Assignee: Hoechst Celanese Corporation
    Inventors: Mohammad Aslam, Brad L. Smith, George Kvakovszky
  • Patent number: 5151540
    Abstract: A method is provided for preparing N-acylaminothiophenols, e.g., N-acetyl-para-aminothiophenol, or aminothiophenols, e.g., para-aminothiophenol, or N,S-diacylaminothiophenols, e.g., N,S-diacetyl-para-aminothiophenol, by reacting any of certain sulfur-containing ketones, viz., an S-(acylaryl) N,N-di(organo)thiocarbamate, e.g., S-(4'-acetophenyl)-N,N-dimethylthiocarbamate, an acylthiophenol acylate ester, e.g., 4-acetothiophenol acetate, or a free acylthiophenol, e.g., 4-acetothiophenol with hydroxylamine or a hydroxylamine salt, to form the oxime of the ketone, subjecting the oxime to a Beckmann rearrangement in the presence of a catalyst to form an S-(N-acyl-aminoaryl) N,N-di(organo)thiocarbamate, e.g., S-(N-acetyl-para-aminophenyl) N,N-dimethylthiocarbamate, an N,S-diacylaminothiophenol, e.g., N,S-diacetyl-paraaminothiophenol, or an N-acyl aminothiophenol, e.g., N-acetyl-para-aminothiophenol, respectively.
    Type: Grant
    Filed: November 26, 1986
    Date of Patent: September 29, 1992
    Assignee: Hoechst Celanese Corporation
    Inventors: Mohammad Aslam, Kenneth G. Davenport
  • Patent number: 5132437
    Abstract: 1-Aminoanthraquinone (1-AAQ) is synthesized by the reaction of 2-chlorobenzyl chloride and xylene in the presence of a solid acid catalyst to yield 2-chloro dimethyldiphenylmethane, subsequent oxidation of the methyl groups, ring closure to form a 1-chloroanthraquinone carboxylic acid, replacement of the 1-chloro group with ammonia, and decarboxylation.
    Type: Grant
    Filed: February 12, 1991
    Date of Patent: July 21, 1992
    Assignee: Hoechst Celanese Corporation
    Inventors: Mohammad Aslam, Daniel A. Aguilar
  • Patent number: 5130448
    Abstract: 1-Aminoanthraquinone (1-AAQ) is synthesized by the condensation of 2-substituted benzoic acid and xylene to yield 2-substituted-dimethylbenzophenone, subsequent oxidation of the methyl groups, ring closure to form a 1-substituted anthraquinone carboxylic acid, replacement of the 1-substituent with ammonia, and decarboxylation.
    Type: Grant
    Filed: February 12, 1991
    Date of Patent: July 14, 1992
    Assignee: Hoechst Celanese Corporation
    Inventors: Mohammad Aslam, Daniel A. Aguilar
  • Patent number: 5087769
    Abstract: A method of forming 6-substituted-2-vinyl naphthalene from a 2-substituted naphthalene compound wherein the substituent in the 2-position is an ortho-para directing electron-donating group not reactive with hydrogen fluoride, comprises contacting the naphthalene compound and an acylating agent with substantially anhydrous hydrogen fluoride to acylate the naphthalene compound to a 6-substituted-2-acylnaphthalene compound, hydrogenating the 6-substituted-2-acylnaphthalene compound to convert the 2-acyl substituent to an alcohol substituent, dehydrating the product of hydrogenation in the presence of a free radical inhibitor to convert the alcohol substituent to an olefinic substituent, and isolating the formed 6-substituted-2-vinylnaphthalene subsequent to the dehydration.
    Type: Grant
    Filed: September 26, 1990
    Date of Patent: February 11, 1992
    Assignee: Hoechst Celanese Corporation
    Inventors: Mohammad Aslam, Henry C. Linstid, III., Kenneth G. Davenport
  • Patent number: 5072025
    Abstract: 3-substituted-4-hydroxy- and 4-acetoxystyrene compounds, especially 3,5-di(methyl, bromo or chloro)-4-acetoxystyrene as well as a process for its preparation. 2,6-dimethylphenol is acylated with acetic anhydride and HF catalyzed to produce 3,5-dimethyl-4-hydroxy-acetophenone. After subsequent esterification with acetic anhydride and catalyzed hydrogenation to form 1-(3',5'-dimethyl-4'-acetoxyphenyl)ethanol, this intermediate is then dehydrated with an acid and a polymerization inhibitor to produce 3,5-dimethyl-4-acetoxystyrene.
    Type: Grant
    Filed: July 26, 1990
    Date of Patent: December 10, 1991
    Assignee: Hoechst Celanese Corporation
    Inventors: Richard Vicari, Mohammad Aslam, Wilson B. Ray, Kenneth G. Davenport, Ralph Dammel, Juergen Lingnau, Karl-Friedrich Doessel
  • Patent number: 5041614
    Abstract: A method for the preparation of 4-acetoxystyrene is disclosed. The method comprises heating 4'-acetoxyphenylmethylcarbinol in the presence of a suitable acid anhydride and a suitable dehydration catalyst in a continuous feed reaction mode to make the 4-acetoxystyrene.
    Type: Grant
    Filed: July 3, 1990
    Date of Patent: August 20, 1991
    Assignee: Hoechst Celanese Corporation
    Inventors: Mohammad Aslam, Charles B. Hilton