Patents by Inventor Mohammad E. Khosroshahi

Mohammad E. Khosroshahi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11828747
    Abstract: An optical multimodal detection system for targeted detection of cancer biomarkers in blood serum. The system comprises of a nano-biosensor, a chamber for receiving the nano-biosensor, a localized surface plasmon resonance (LSPR) based detector, a plasmon enhanced fluorescence (PEF) based detector and a surface-enhanced Raman scattering (SERS) based detector. The nano-biosensor comprises of a glass substrate provided with an active site for receiving a sample of blood serum, and is dimensioned to define a flow channel for introducing the sample of blood serum into the nano-biosensor. The nano-biosensor is provided with a layer of amino-silane compound coating over the glass substrate and a plurality of gold nano-urchins (GNU) bound to the layer of silicone compound.
    Type: Grant
    Filed: November 27, 2021
    Date of Patent: November 28, 2023
    Assignee: M.I.S. ELECTRONICS INC.
    Inventors: Mohammad E Khosroshahi, Yesha Patel
  • Publication number: 20230168239
    Abstract: An optical multimodal detection system for targeted detection of cancer biomarkers in blood serum. The system comprises of a nano-biosensor, a chamber for receiving the nano-biosensor, a localized surface plasmon resonance (LSPR) based detector, a plasmon enhanced fluorescence (PEF) based detector and a surface-enhanced Raman scattering (SERS) based detector. The nano-biosensor comprises of a glass substrate provided with an active site for receiving a sample of blood serum, and is dimensioned to define a flow channel for introducing the sample of blood serum into the nano-biosensor. The nano-biosensor is provided with a layer of amino-silane compound coating over the glass substrate and a plurality of gold nano-urchins (GNU) bound to the layer of silicone compound.
    Type: Application
    Filed: November 27, 2021
    Publication date: June 1, 2023
    Inventors: Mohammad E Khosroshahi, Yesha Patel
  • Publication number: 20220117905
    Abstract: A method for fabricating a nanostructure comprises adding a fungal mycelium (114) in a growth vessel (110). The growth vessel (110) comprising a growth medium (118). In the next step, the nanostructure is added in the growth vessel (110) which is then absorbed by the fungal mycelium (114) and finally distributed throughout the fungal mycelium (114). Further, a delivery vehicle for payload (206) is also disclosed which comprises the fabricated nanostructure.
    Type: Application
    Filed: April 17, 2021
    Publication date: April 21, 2022
    Inventors: Mohammad E Khosroshahi, Vaughn Woll-Morison, Tiam Mohmedi
  • Patent number: 10883923
    Abstract: This invention relates a biomarker detection system, for detecting cancer biomarkers using optical heterodyning. The system includes a tunable laser configured to produce a plurality of laser beams of at least two frequencies, a pair of optical fibers coated with gold nanoparticles and functionalized with an antibody is configured to undergo a change of fiber surface of each optical fiber by adsorbing molecules of an analyte on a surface of the antibody, modify a reflection of the plurality of laser beams inside a fiber core of the each optical fiber when the each optical fiber is bent, and create an audible beat frequency; and perform spectral analysis. A frequency spectrum analyzer configured to provide a composition information of the adsorbed molecules based on a spectral analysis of the beat frequency.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: January 5, 2021
    Assignee: M.I.S. Electronics Inc.
    Inventor: Mohammad E Khosroshahi
  • Publication number: 20180348118
    Abstract: This invention relates a biomarker detection system, for detecting cancer biomarkers using optical heterodyning. The system includes a tunable laser configured to produce a plurality of laser beams of at least two frequencies, a pair of optical fibers coated with gold nanoparticles and functionalized with an antibody is configured to undergo a change of fiber surface of each optical fiber by adsorbing molecules of an analyte on a surface of the antibody, modify a reflection of the plurality of laser beams inside a fiber core of the each optical fiber when the each optical fiber is bent, and create an audible beat frequency; and perform spectral analysis. A frequency spectrum analyzer configured to provide a composition information of the adsorbed molecules based on a spectral analysis of the beat frequency.
    Type: Application
    Filed: June 1, 2018
    Publication date: December 6, 2018
    Inventor: Mohammad E. Khosroshahi