Patents by Inventor Mohammad Jafari

Mohammad Jafari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11737868
    Abstract: A handle for a prosthetic heart valve delivery apparatus includes a housing, a motorized mechanism, and a holding mechanism. The housing is configured to be hand-held by a user and includes a distal opening. The motorized mechanism is disposed within the housing and is configured to be releasably coupled to a proximal end portion of a first shaft of the prosthetic heart valve delivery apparatus. When actuated, the motorized mechanism is configured to rotate the first shaft relative to the housing. The holding mechanism is disposed inside the housing and is configured to engage a proximal end portion of a second shaft of the prosthetic heart valve delivery apparatus such that the second shaft is axially and rotationally fixed relative to the housing, and the first shaft extends through the second shaft.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: August 29, 2023
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Michael J. Popp, David Alon, Jun Liu, Luca Pesce, Mohammad Jafari
  • Publication number: 20220226110
    Abstract: An expandable docking station includes an annular valve seat having an end, an annular outer wall comprising struts disposed around the valve seat, and links that connect the end of the annular valve seat to the annular outer wall. Each of the links extends from the struts of the annular outer wall directly toward a longitudinal axis that runs longitudinally through a center of the docking station, and to a corresponding one of a plurality of circumferentially spaced axially extending legs at least partially defining the annular valve seat. The outer wall is configured to conform to an interior shape of a blood vessel, when expanded inside the blood vessel, such that the outer wall can expand in multiple locations to conform to multiple bulges of the blood vessel and can contract in multiple locations to conform to multiple narrowed regions of the blood vessel.
    Type: Application
    Filed: April 1, 2022
    Publication date: July 21, 2022
    Inventors: Liron Tayeb, Eran Goldberg, David Maimon, Adi Carmi, Arie Tylis, Ralph Schneider, Mohammad Jafari, Hengchu Cao, Eitan Atias
  • Patent number: 11291540
    Abstract: Docking stations for transcatheter valves are described. The docking stations can include an expandable frame, at least one sealing portion, and a valve seat. The expandable frame can be configured to conform to an interior shape of a portion of the circulatory system when expanded inside the circulatory system. The sealing portion can be configured to contact an interior surface of the circulatory system to create a seal. The valve seat can be connected to the expandable frame and can be configured to support an expandable transcatheter valve. The docking stations are adaptable to different anatomies/locations to allow implantation of a transcatheter valve in a variety of anatomies/locations.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: April 5, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Liron Tayeb, Eran Goldberg, David Maimon, Adi Carmi, Arie Tylis, Ofir Witzman, Ralph Schneider, Mohammad Jafari, Hengchu Cao, Eason Michael Abbott, Dustin P. Armer, Michael D. Franklin, Tomer Saar, Anatoly Dvorsky, John J. Desrosiers, Daniel James Murray, Michael G. Valdez, Assaf Bash, Amir Blumenfeld, Noa Axelrod, Eitan Atias
  • Publication number: 20220008200
    Abstract: Certain embodiments of the present disclosure provide a prosthetic valve (e.g., prosthetic heart valve) and a valve delivery apparatus for delivery of the prosthetic valve to a native valve site via the human vasculature. The delivery apparatus is particularly suited for advancing a prosthetic heart valve through the aorta (i.e., in a retrograde approach) for replacing a diseased native aortic valve. The delivery apparatus in particular embodiments is configured to deploy a prosthetic valve from a delivery sheath in a precise and controlled manner at the target location within the body.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Inventors: Michael J. Popp, David Alon, Jun Liu, Luca Pesce, Mohammad Jafari
  • Patent number: 11129713
    Abstract: A prosthetic heart valve delivery system can include a catheter portion having a sheath that can cover and uncover the prosthetic heart valve mounted on an inner shaft, a handle having a sheath actuator operatively coupled to a proximal portion of the sheath, the inner shaft extending through the handle, and a shaft retractor releasably coupled to a proximal portion of the handle and fixedly coupled to a proximal portion of the inner shaft. A sheath actuator can move the sheath axially relative to the inner shaft when the shaft retractor is coupled to the handle, and a proximal movement of the sheath relative to the inner shaft can cause the sheath to uncover the prosthetic heart valve. The shaft retractor can be operable to retract the inner shaft and the nosecone proximally relative to the sheath when the shaft retractor is released from the handle.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: September 28, 2021
    Assignee: Edwards Lifesciences Corporation
    Inventors: Michael J. Popp, David Alon, Jun Liu, Luca Pesce, Mohammad Jafari
  • Publication number: 20210038385
    Abstract: A prosthetic heart valve delivery system can include a catheter portion having a sheath that can cover and uncover the prosthetic heart valve mounted on an inner shaft, a handle having a sheath actuator operatively coupled to a proximal portion of the sheath, the inner shaft extending through the handle, and a shaft retractor releasably coupled to a proximal portion of the handle and fixedly coupled to a proximal portion of the inner shaft. A sheath actuator can move the sheath axially relative to the inner shaft when the shaft retractor is coupled to the handle, and a proximal movement of the sheath relative to the inner shaft can cause the sheath to uncover the prosthetic heart valve. The shaft retractor can be operable to retract the inner shaft and the nosecone proximally relative to the sheath when the shaft retractor is released from the handle.
    Type: Application
    Filed: October 22, 2020
    Publication date: February 11, 2021
    Applicant: Edwards Lifesciences Corporation
    Inventors: Michael J. Popp, David Alon, Jun Liu, Luca Pesce, Mohammad Jafari
  • Publication number: 20200170793
    Abstract: A handle for a prosthetic heart valve delivery apparatus includes a housing, a motorized mechanism, and a holding mechanism. The housing is configured to be hand-held by a user and includes a distal opening. The motorized mechanism is disposed within the housing and is configured to be releasably coupled to a proximal end portion of a first shaft of the prosthetic heart valve delivery apparatus. When actuated, the motorized mechanism is configured to rotate the first shaft relative to the housing. The holding mechanism is disposed inside the housing and is configured to engage a proximal end portion of a second shaft of the prosthetic heart valve delivery apparatus such that the second shaft is axially and rotationally fixed relative to the housing, and the first shaft extends through the second shaft.
    Type: Application
    Filed: February 5, 2020
    Publication date: June 4, 2020
    Inventors: Michael J. Popp, David Alon, Jun Liu, Luca Pesce, Mohammad Jafari
  • Patent number: 10470876
    Abstract: Embodiments of prosthetic valves for implantation within a native mitral valve are provided. A prosthetic valve may comprise a radially compressible main body and a one-way valve portion. The prosthetic valve may further comprise one or more ventricular anchors coupled to the main body and disposed outside of the main body. The ventricular anchors may be configured such that a reduced profile of the prosthetic valve is possible. A space may be provided between an outer surface of the main body and the ventricular anchors for receiving native mitral valve leaflets. The prosthetic valve may include an atrial sealing member adapted for placement above the annulus of the mitral valve. Methods and devices for receiving the native mitral valve leaflets between the ventricular anchors and the main body are described.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: November 12, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Nikolay Gurovich, Mohammad Jafari, Liron Tayeb, Ilan Tamir, Ziv Yohanan, Noam Nir, David Maimon, Boaz Manash
  • Publication number: 20190000615
    Abstract: Docking stations for transcatheter valves are described. The docking stations can include an expandable frame, at least one sealing portion, and a valve seat. The expandable frame can be configured to conform to an interior shape of a portion of the circulatory system when expanded inside the circulatory system. The sealing portion can be configured to contact an interior surface of the circulatory system to create a seal. The valve seat can be connected to the expandable frame and can be configured to support an expandable transcatheter valve. The docking stations are adaptable to different anatomies/locations to allow implantation of a transcatheter valve in a variety of anatomies/locations.
    Type: Application
    Filed: July 13, 2018
    Publication date: January 3, 2019
    Inventors: Liron Tayeb, Eran Goldberg, David Maimon, Adi Carmi, Arie Tylis, Ofir Witzman, Ralph Schneider, Mohammad Jafari, Hengchu Cao, Eason Michael Abbott, Dustin P. Armer, Michael D. Franklin, Tomer Saar, Anatoly Dvorsky, John J. Desrosiers, Daniel James Murray, Michael G. Valdez, Assaf Bash, Amir Blumenfeld, Noa Axelrod, Eitan Atias
  • Patent number: 9775591
    Abstract: Embodiments of the present disclosure are directed to implantable sealing devices, delivery apparatuses, and methods of their use, for closing surgical openings or defects in a sidewall of a vessel in a subject. In several embodiments, the disclosed implantable sealing devices, delivery apparatuses, and methods can be used to close a surgical opening in a sidewall of the heart.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: October 3, 2017
    Assignee: Edwards Lifesciences Corporation
    Inventors: Sergio Delgado, Ralph Schneider, Stanton J. Rowe, Ming H. Wu, Mohammad Jafari, Jon Boomgarden
  • Publication number: 20170128199
    Abstract: Embodiments of prosthetic valves for implantation within a native mitral valve are provided. A prosthetic valve may comprise a radially compressible main body and a one-way valve portion. The prosthetic valve may further comprise one or more ventricular anchors coupled to the main body and disposed outside of the main body. The ventricular anchors may be configured such that a reduced profile of the prosthetic valve is possible. A space may be provided between an outer surface of the main body and the ventricular anchors for receiving native mitral valve leaflets. The prosthetic valve may include an atrial sealing member adapted for placement above the annulus of the mitral valve. Methods and devices for receiving the native mitral valve leaflets between the ventricular anchors and the main body are described.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 11, 2017
    Inventors: Nikolay Gurovich, Mohammad Jafari, Liron Tayeb, Ilan Tamir, Ziv Yohanan, Noam Nir, David Maimon, Boaz Manash
  • Patent number: 9498202
    Abstract: Disclosed herein are exemplary embodiments of suture securement devices that replace the need to tie knots in sutures. Some embodiments comprise an annular outer body and one or more suture engagement tabs extending inwardly from the outer body. The devices can comprise a superelastic and/or shape-memory material and have a generally in-plane initial configuration. The suture engagement portions are deformable out-of-plane to an active configuration with the outer body compressed and the tabs interlocked with each other. The device can be heat-set in the deformed configuration. The interlocked tabs exert a pinching force on sutures passing between them that restricts the sutures from sliding through the opening in one longitudinal direction.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: November 22, 2016
    Assignee: Edwards Lifesciences Corporation
    Inventors: Mohammad Jafari, Ming H. Wu, Hengchu Cao, Ralph Schneider, Manouchehr A. Miraki
  • Publication number: 20160166248
    Abstract: A multiple-fire securing device includes a hollow outer shaft, a reloader, a reloader movement assembly, a rail, and securing structures each defining an inner securing orifice. The reloader longitudinally moves within the outer shaft and has a distal end shaped to temporarily contact one of the securing structures. The rail is disposed within the reloader and has an installing location. The securing structures are disposed on the rail. The reloader movement assembly moves the reloader longitudinally in a distal direction to deliver a first securing structure to the installing location from a first proximal position and moves the reloader proximally away from the installing location without the first securing structure to a position in which the distal end of the reloader temporarily contacts a second one of the securing structures. The second and successive securing structures are moved one at a time to the installing location.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 16, 2016
    Inventors: Derek Dee Deville, Kevin W. Smith, Michael Walter Kirk, Carlos Rivera, George Nunez, Thomas O. Bales, JR., Korey Kline, Matthew A. Palmer, M. Sean McBrayer, Richard Cartledge, Max Pierre Mendez, Hengchu Cao, Anthony Peter Carcia, Kevin Dang, Carey Hendsbee, Brent K. Hoffman, Brian R. Jacobs, Mohammad Jafari, Brian Janish, Jeffrey L. Mahoney, Raffaele Mazzei, Manouchehr A. Miraki, Ryan Moehle, Jeremiah Morgan, Michael C. Murad, Travis Zenyo Oba, Ralph Schneider, Fabian Daniel Schroeder, Tyler Douglas Smith, Ming H. Wu
  • Patent number: 9155619
    Abstract: Certain embodiments of the present disclosure provide a prosthetic valve (e.g., prosthetic heart valve) and a valve delivery apparatus for delivery of the prosthetic valve to a native valve site via the human vasculature. The delivery apparatus is particularly suited for advancing a prosthetic heart valve through the aorta (i.e., in a retrograde approach) for replacing a diseased native aortic valve. The delivery apparatus in particular embodiments is configured to deploy a prosthetic valve from a delivery sheath in a precise and controlled manner at the target location within the body.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: October 13, 2015
    Assignee: Edwards Lifesciences Corporation
    Inventors: Jun Liu, Luca Pesce, Michael Popp, David Alon, Mohammad Jafari, Sergio Delgado
  • Publication number: 20150142049
    Abstract: Embodiments of the present disclosure are directed to implantable sealing devices, delivery apparatuses, and methods of their use, for closing surgical openings or defects in a sidewall of a vessel in a subject. In several embodiments, the disclosed implantable sealing devices, delivery apparatuses, and methods can be used to close a surgical opening in a sidewall of the heart.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 21, 2015
    Applicant: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Sergio Delgado, Ralph Schneider, Stanton J. Rowe, Ming H. Wu, Mohammad Jafari, Jon Boomgarden
  • Publication number: 20140031864
    Abstract: Disclosed herein are exemplary embodiments of suture securement devices that replace the need to tie knots in sutures. Some embodiments comprise an annular outer body and one or more suture engagement tabs extending inwardly from the outer body. The devices can comprise a superelastic and/or shape-memory material and have a generally in-plane initial configuration. The suture engagement portions are deformable out-of-plane to an active configuration with the outer body compressed and the tabs interlocked with each other. The device can be heat-set in the deformed configuration. The interlocked tabs exert a pinching force on sutures passing between them that restricts the sutures from sliding through the opening in one longitudinal direction.
    Type: Application
    Filed: July 9, 2013
    Publication date: January 30, 2014
    Inventors: Mohammad Jafari, Ming H. Wu, Hengchu Cao, Ralph Schneider
  • Publication number: 20120239142
    Abstract: Certain embodiments of the present disclosure provide a prosthetic valve (e.g., prosthetic heart valve) and a valve delivery apparatus for delivery of the prosthetic valve to a native valve site via the human vasculature. The delivery apparatus is particularly suited for advancing a prosthetic heart valve through the aorta (i.e., in a retrograde approach) for replacing a diseased native aortic valve. The delivery apparatus in particular embodiments is configured to deploy a prosthetic valve from a delivery sheath in a precise and controlled manner at the target location within the body.
    Type: Application
    Filed: February 24, 2012
    Publication date: September 20, 2012
    Inventors: Jun Liu, Luca Pesce, Michael Popp, David Alon, Mohammad Jafari, Sergio Delgado
  • Patent number: RE47209
    Abstract: Disclosed herein are exemplary embodiments of suture securement devices that replace the need to tie knots in sutures. Some embodiments comprise an annular outer body and one or more suture engagement tabs extending inwardly from the outer body. The devices can comprise a superelastic and/or shape-memory material and have a generally in-plane initial configuration. The suture engagement portions are deformable out-of-plane to an active configuration with the outer body compressed and the tabs interlocked with each other. The device can be heat-set in the deformed configuration. The interlocked tabs exert a pinching force on sutures passing between them that restricts the sutures from sliding through the opening in one longitudinal direction.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: January 22, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Mohammad Jafari, Ming H. Wu, Hengchu Cao, Ralph Schneider, Manouchehr A. Miraki