Patents by Inventor Mohammad Laham

Mohammad Laham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7633674
    Abstract: A photonic integrated circuit having a plurality of circuit components, is disclosed, which may include an MMI for splitting signal power passing therethrough among first and second optical pathways coupled to first and second outputs, respectively, of the MMI, thereby directing first and second percentages of the signal power along the first and the second optical pathways, respectively; and a photodetector integrated into the photonic integrated circuit and coupled to said first optical pathway for measuring a signal power level on said first optical pathway.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: December 15, 2009
    Assignee: Alphion Corporation
    Inventors: Mohammad Laham, Boris Stefanov
  • Publication number: 20090041454
    Abstract: A photonic integrated circuit having a plurality of circuit components, is disclosed, which may include an MMI for splitting signal power passing therethrough among first and second optical pathways coupled to first and second outputs, respectively, of the MMI, thereby directing first and second percentages of the signal power along the first and the second optical pathways, respectively; and a photodetector integrated into the photonic integrated circuit and coupled to said first optical pathway for measuring a signal power level on said first optical pathway.
    Type: Application
    Filed: October 20, 2008
    Publication date: February 12, 2009
    Applicant: Alphion Corporation
    Inventors: Mohammad Laham, Boris Stefanov
  • Patent number: 7440179
    Abstract: The method of isolating faults internal to, for example, from tonic integrated circuits by diverting a portion of certain input and output signals to integrated photo detectors. By analyzing the admitted optical signal in each of plural photo detectors, falls within the circuit can be isolated.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: October 21, 2008
    Assignee: Alphion Corporation
    Inventors: Mohammad Laham, Boris Stefanov
  • Publication number: 20060182440
    Abstract: A robust nonblocking switch architecture is presented, in the first and final stages made of switch modules which have extra, unallocated, input and output ports beyond those necessary to render the switch architecture nonblocking. Each middle stage has an extra switch module, affording it spare unallocated ports as well. A method of isolating a fault is also presented, given the robust switching architecture. Operating on each stage one at a time, the switching architecture is reconnected so as to bypass either the input, the output, or both the input and the output ports of the switch module in such stage impacted in the faulted signal path. Such method allows the isolation of the faulty switch module, and can be done automatically, with either external apparatus, or integrated fault isolation equipment.
    Type: Application
    Filed: April 18, 2006
    Publication date: August 17, 2006
    Inventors: Boris Stefanov, Mohammad Laham, Kevin Beach, Scott Kaminski
  • Patent number: 6856767
    Abstract: The present invention provides an optical signal quality selection system for optimizing the quality of information transmission. The system splits an incoming optical signal into two equal signals. The split signals are evaluated in optical performance monitors, transmitting an electrical output message to a signal selector relating to the quality of the respective signal. A second electrical message is sent from the optical performance generator to an alarm indicator signal generator, which sends an optical signal to the signal selector to drop the one of the split signals and transmit the non-dropped split signal. An unequipped optical signal from an optical idle signal generator is triggered if no active optical signal is being transmitted.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: February 15, 2005
    Assignee: Alphion Corporation
    Inventors: Mohammad Laham, Raj Acharya, Roman Antosik, Jayantha Das, Bharat Dave, Chinnabbu Ekambaram, Khem Gandhi, Frank Hujber, David Lowe, Frederick Renner, Jiten Sarathy, Ronald Simprini, Boris Stefanov, Tan Thai, Ravi Vora
  • Publication number: 20040100257
    Abstract: An Abstract was inadvertently omitted from the original filing of the application back on May 28, 2003, and we ask that you kindly add the following paragraph at the end of the application: “The method of isolating faults internal to, for example, from tonic integrated circuits by diverting a portion of certain input and output signals to integrated photo detectors. By analyzing the admitted optical signal in each of plural photo detectors, falls within the circuit can be isolated.
    Type: Application
    Filed: May 28, 2003
    Publication date: May 27, 2004
    Inventors: Mohammad Laham, Boris Stefanov
  • Patent number: 6678086
    Abstract: A method and circuit are presented for the all optical recovery of the clock signal from an arbitrary optical data signal. The method involves two stages. A first stage preprocesses the optical signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The output of the preprocessing stage is fed to a clock recovery stage, which consists of a symmetric interferometer that locks on to the inherent clock signal by using the second stage input signal to trigger two optical sources to self oscillate at the clock rate. In a preferred embodiment the second stage is implemented via SOAs integrated in the arms of an interferometer, with two DFB lasers as terminuses. The output of the interferometer is an optical clock signal at the clock rate of the original input.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: January 13, 2004
    Assignee: Alphion Corporation
    Inventors: Bharat Dave, Doruk Engin, Kwang Kim, Mohammad Laham, Julio Martinez, Olga Nedzhvetskaya, Jithamithra Sarathy, Ronald Simprini, Boris Stefanov, Tan Buu Thai
  • Patent number: 6671467
    Abstract: A method and circuit are presented for the all optical recovery of the clock signal from an arbitrary optical data signal. The method involves two stages. A first stage preprocesses the optical signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The output of the preprocessing stage is fed to a clock recovery stage, which consists of a symmetric interferometer that locks on to the inherent clock signal by using the second stage input signal to trigger two optical sources to self oscillate at the clock rate. In a preferred embodiment the second stage is implemented via SOAs integrated in the arms of an interferometer, with two DFB lasers as terminuses. The output of the interferometer is an optical clock signal at the clock rate of the original input.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: December 30, 2003
    Assignee: Alphion Corporation
    Inventors: Bharat Dave, Doruk Engin, Kwang Kim, Mohammad Laham, Julio Martinez, Olga Nedzhvetskaya, Jithamithra Sarathy, Roanld Simprini, Boris Stefanov, Tan Buu Thai
  • Patent number: 6624924
    Abstract: A method and circuit are presented for the all optical recovery of the clock signal from an arbitrary optical data signal. The method involves two stages. A first stage preprocesses the optical signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The output of the preprocessing stage is fed to a clock recovery stage, which consists of a symmetric interferometer that locks on to the inherent clock signal by using the second stage input signal to trigger two optical sources to self oscillate at the clock rate. In a preferred embodiment the second stage is implemented via SOAs integrated in the arms of an interferometer, with two DFB lasers as terminuses. The output of the interferometer is an optical clock signal at the clock rate of the original input.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: September 23, 2003
    Assignee: Alphion Corp.
    Inventors: Bharat Dave, Doruk Engin, Kwang Kim, Mohammad Laham, Julio Martinez, Olga Nedzhvetskaya, Jithamithra Sarathy, Ronald Simprini, Boris Stefanov, Tan Buu Thai
  • Patent number: 6563621
    Abstract: A method and circuit are presented for the all optical recovery of the clock signal from an arbitrary optical data signal. The method involves two stages. A first stage preprocesses the optical signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The output of the preprocessing stage is fed to a clock recovery stage, which consists of a symmetric interferometer that locks on to the inherent clock signal by using the second stage input signal to trigger two optical sources to self oscillate at the clock rate. In a preferred embodiment the second stage is implemented via SOAs integrated in the arms of an interferometer, with two DFB lasers as terminuses. The output of the interferometer is an optical clock signal at the clock rate of the original input.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: May 13, 2003
    Assignee: Alphion Corporation
    Inventors: Bharat Dave, Doruk Engin, Kwang Kim, Mohammad Laham, Julio Martinez, Olga Nedzhvetskaya, Jithamithra Sarathy, Ronald Simprini, Boris Stefanov, Tan Buu Thai
  • Publication number: 20030063839
    Abstract: A robust nonblocking switch architecture is presented, in the first and final stages made of switch modules which have extra, unallocated, input and output ports beyond those necessary to render the switch architecture nonblocking. Each middle stage has an extra switch module, affording it spare unallocated ports as well. A method of isolating a fault is also presented, given the robust switching architecture. Operating on each stage one at a time, the switching architecture is reconnected so as to bypass either the input, the output, or both the input and the output ports of the switch module in such stage impacted in the faulted signal path. Such method allows the isolation of the faulty switch module, and can be done automatically, with either external apparatus, or integrated fault isolation equipment.
    Type: Application
    Filed: January 2, 2002
    Publication date: April 3, 2003
    Inventors: Scott Kaminski, Mohammad Laham, Boris Stefanov, Kevin Beach
  • Publication number: 20020181088
    Abstract: A method and circuit are presented for the all optical recovery of the clock signal from an arbitrary optical data signal. The method involves two stages. A first stage preprocesses the optical signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The output of the preprocessing stage is fed to a clock recovery stage, which consists of a symmetric interferometer that locks on to the inherent clock signal by using the second stage input signal to trigger two optical sources to self oscillate at the clock rate. In a preferred embodiment the second stage is implemented via SOAs integrated in the arms of an interferometer, with two DFB lasers as terminuses. The output of the interferometer is an optical clock signal at the clock rate of the original input.
    Type: Application
    Filed: July 15, 2002
    Publication date: December 5, 2002
    Inventors: Bharat Dave, Doruk Engin, Kwang Kim, Mohammad Laham, Julio Martinez, Olga Nedzhvetskaya, Jithamithra Sarathy, Ronald Simprini, Boris Stefanov, Tan Buu Thai
  • Publication number: 20020181083
    Abstract: A method and circuit are presented for the all optical recovery of the clock signal from an arbitrary optical data signal. The method involves two stages. A first stage preprocesses the optical signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The output of the preprocessing stage is fed to a clock recovery stage, which consists of a symmetric interferometer that locks on to the inherent clock signal by using the second stage input signal to trigger two optical sources to self oscillate at the clock rate. In a preferred embodiment the second stage is implemented via SOAs integrated in the arms of an interferometer, with two DFB lasers as terminuses. The output of the interferometer is an optical clock signal at the clock rate of the original input.
    Type: Application
    Filed: July 15, 2002
    Publication date: December 5, 2002
    Inventors: Bharat Dave, Doruk Engin, Kwang Kim, Mohammad Laham, Julio Martinez, Olga Nedzhvetskaya, Jithamithra Sarathy, Ronald Simprini, Boris Stefanov, Tan Buu Thai
  • Publication number: 20020181086
    Abstract: A method and circuit are presented for the all optical recovery of the clock signal from an arbitrary optical data signal. The method involves two stages. A first stage preprocesses the optical signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The output of the preprocessing stage is fed to a clock recovery stage, which consists of a symmetric interferometer that locks on to the inherent clock signal by using the second stage input signal to trigger two optical sources to self oscillate at the clock rate. In a preferred embodiment the second stage is implemented via SOAs integrated in the arms of an interferometer, with two DFB lasers as terminuses. The output of the interferometer is an optical clock signal at the clock rate of the original input.
    Type: Application
    Filed: July 15, 2002
    Publication date: December 5, 2002
    Inventors: Bharat Dave, Doruk Engin, Kwang Kim, Mohammad Laham, Julio Martinez, Olga Nedzhvetskaya, Jithamithra Sarathy, Ronald Simprini, Boris Stefanov, Tan Buu Thai
  • Publication number: 20020176157
    Abstract: A method and circuit are presented for the all optical recovery of the clock signal from an arbitrary optical data signal. The method involves two stages. A first stage preprocesses the optical signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The output of the preprocessing stage is fed to a clock recovery stage, which consists of a symmetric interferometer that locks on to the inherent clock signal by using the second stage input signal to trigger two optical sources to self oscillate at the clock rate. In a preferred embodiment the second stage is implemented via SOAs integrated in the arms of an interferometer, with two DFB lasers as terminuses. The output of the interferometer is an optical clock signal at the clock rate of the original input.
    Type: Application
    Filed: July 15, 2002
    Publication date: November 28, 2002
    Inventors: Bharat Dave, Doruk Engin, Kwang Kim, Mohammad Laham, Julio Martinez, Olga Nedzhvetskaya, Jithamithra Sarathy, Ronald Simprini, Boris Stefanov, Tan Buu Thai
  • Publication number: 20020133734
    Abstract: A novel solution to fast network restoration is provided. In a network node, dedicated hardware elements are utilized to implement restoration, and these elements are linked via a specialized high speed bus. Moreover, the incoming and outgoing optical signals to each input/output port are continually monitored and their status communicated to such dedicated hardware via the high-speed bus. This provides a complete snapshot in virtually real time of the state of each input port on the node, and the switch map specifying the inter portal connections, to the dedicated control and restoration hardware. The specialized hardware detects trouble conditions and reconfigures the switching fabric. The invention enables a very fast and efficient control loop between the I/O ports, switch fabrics, and controllers.
    Type: Application
    Filed: August 17, 2001
    Publication date: September 19, 2002
    Inventors: Jithamithra Sarathy, Raj Acharya, Roman Antosik, Jayanta Das, Bharat Dave, Chinnabbu Ekambaram, Khem Gandhi, Frank Hujber, Mohammad Laham, Frederick Renner, Ronald Simprini, Boris Stefanov, Tan B. Thai, Ravi Vora
  • Patent number: 6442372
    Abstract: A method and system for a communication system with a communication center, a communication site, a user station and a remote unit allowing the communication center to communicate with the user station over a user channel and communicate with the remote unit over a system channel such that the communication center can monitor, operate or control the remote unit on as needed basis.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: August 27, 2002
    Assignee: Lucent Technologies Inc.
    Inventors: Mohammad Laham, Charles Sanford
  • Publication number: 20020048060
    Abstract: The present invention provides an optical signal quality selection system for optimizing the quality of information transmission. The system splits an incoming optical signal into two equal signals. The split signals are evaluated in optical performance monitors, transmitting an electrical output message to a signal selector relating to the quality of the respective signal. A second electrical message is sent from the optical performance generator to an alarm indicator signal generator, which sends an optical signal to the signal selector to drop the one of the split signals and transmit the non-dropped split signal. An unequipped optical signal from an optical idle signal generator is triggered if no active optical signal is being transmitted.
    Type: Application
    Filed: April 18, 2001
    Publication date: April 25, 2002
    Inventors: Mohammad A. Laham, Raj Acharya, Roman Antosik, Jayantha Das, Bharat Dave, Chinnabbu Ekambaram, Khem Gandhi, Frank Hujber, David Lowe, Frederick Renner, Jiten Sarathy, Ronald Simprini, Boris Stefanov, Tan Thai, Ravi Vora
  • Publication number: 20020041409
    Abstract: In a maintenance system for a switch fabric in an optical switching network, a test signal is generated and multiplexed with the incoming traffic signal to form a composite signal. The composite signal is transmitted through the switch fabric via the traffic channel and then demultiplexed back into the traffic signal and the test signal, both of which are monitored by one or optical performance monitors. Thus, if the traffic signal is found to be defective, it is easy to determine whether the cause is the switch fabric or the incoming optical traffic signal that was already bad before entering the switch fabric.
    Type: Application
    Filed: June 19, 2001
    Publication date: April 11, 2002
    Inventors: Mohammad Laham, Raj Acharya, Roman Antosik, Jayanta Das, Khem Gandhi, Bharat Dave, Jithamithra Sarathy, Ronald Simprini, Chinnabbu Ekambaram, Frank Hujber, Boris Stefanov, Frederick Renner, Tan B. Thai, Ravi Vora
  • Publication number: 20020040980
    Abstract: A method and circuit are presented for the all optical recovery of the clock signal from an arbitrary optical data signal. The method involves two stages. A first stage preprocesses the optical signal by converting a NRZ signal to a PRZ signal, or if the input optical signal is RZ, by merely amplifying it. In a preferred embodiment this stage is implemented via an integrated SOA in each arm of an asymmetric interferometric device. The output of the preprocessing stage is fed to a clock recovery stage, which consists of a symmetric interferometer that locks on to the inherent clock signal by using the second stage input signal to trigger two optical sources to self oscillate at the clock rate. In a preferred embodiment the second stage is implemented via SOAs integrated in the arms of an interferometer, with two DFB lasers as terminuses. The output of the interferometer is an optical clock signal at the clock rate of the original input.
    Type: Application
    Filed: May 4, 2001
    Publication date: April 11, 2002
    Inventors: Bharat Dave, Doruk Engin, Kwang Kim, Mohammad Laham, Julio Martinez, Olga Nadzhvetskaya, Jithamithra Sarathy, Ronald Simprini, Boris Stefanov, Tan Buu Thai