Patents by Inventor Mohammad N. ElBsat

Mohammad N. ElBsat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10824125
    Abstract: Disclosed herein are related to a system, a method, and a non-transitory computer readable medium for operating an energy plant. In one aspect, the system generates a regression model of a produced thermal energy load produced by a supply device of the plurality of devices. The system predicts the produced thermal energy load produced by the supply device for a first time period based on the regression model. The system determines a heat capacity of gas or liquid in the loop based on the predicted produced thermal energy load. The system generates a model of mass storage based on the heat capacity. The system predicts an induced thermal energy load during a second time period at a consuming device of the plurality of devices based on the model of the mass storage. The system operates the energy plant according to the predicted induced thermal energy load.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: November 3, 2020
    Assignee: Johnson Controls Technology Company
    Inventors: Mohammad N. Elbsat, Michael J. Wenzel, Graeme Willmott, Matthew J. Asmus
  • Publication number: 20200318843
    Abstract: A frequency response optimization system includes a battery configured to store and discharge electric power, a power inverter configured to control an amount of the electric power stored or discharged from the battery at each of a plurality of time steps during a frequency response period, and a frequency response controller. The frequency response controller is configured to receive a regulation signal from an incentive provider, determine statistics of the regulation signal, use the statistics of the regulation signal to generate an optimal frequency response midpoint that achieves a desired change in a state-of-charge (SOC) of the battery while participating in a frequency response program, and use the midpoints to determine optimal battery power setpoints for the power inverter. The power inverter is configured to use the optimal battery power setpoints to control the amount of the electric power stored or discharged from the battery.
    Type: Application
    Filed: March 17, 2020
    Publication date: October 8, 2020
    Inventors: Michael J. Wenzel, Kirk H. Drees, Mohammad N. ElBsat
  • Publication number: 20200301408
    Abstract: A model predictive maintenance (MPM) system for building equipment includes one or more processing circuits having one or more processors and memory. The memory store instructions that, when executed by the one or more processors, cause the one or more processors to perform operations including estimating a degradation state of the building equipment, using a degradation impact model to predict an amount of one or more input resources consumed by the building equipment to produce one or more output resources based on the degradation state of the building equipment, generating a maintenance schedule for the building equipment based on the amount of the one or more input resources predicted by the degradation impact model, and initiating a maintenance activity for the building equipment in accordance with the maintenance schedule.
    Type: Application
    Filed: June 11, 2020
    Publication date: September 24, 2020
    Applicant: Johnson Controls Technology Company
    Inventors: MOHAMMAD N. ELBSAT, MICHAEL J. WENZEL, ROBERT D. TURNEY
  • Patent number: 10778012
    Abstract: An optimization controller for a battery includes a high level controller configured to receive a regulation signal from an incentive provider at a data fusion module, determine statistics of the regulation signal, and use the statistics of the regulation signal to generate a frequency response midpoint. The optimization controller further includes a low level controller configured to use the frequency response midpoint to determine optimal battery power setpoints and use the optimal battery power setpoints to control an amount of electric power stored or discharged from the battery during a frequency response period.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: September 15, 2020
    Assignee: Con Edison Battery Storage, LLC
    Inventors: Radu Dorneanu, Michael J. Wenzel, Mohammad N. Elbsat, Kirk H. Drees, Andrew J. Przybylski
  • Publication number: 20200284458
    Abstract: An air conditioner controller for an air conditioner is configured to obtain a first value of a performance value from a predetermined component of the air conditioner, and estimate a total cost. The controller is configured to estimate the total cost including an operation cost and a renewal cost of the air conditioner based on the first value of the performance variable obtained from the predetermined component of the air conditioner and a second value of the performance variable estimated by an operational model of the air conditioner. The total cost is a total cost of operating and renewing the air conditioner for a time period after a time at which the first value of the performance variable is obtained. The controller is configured to output the total cost via a user interface.
    Type: Application
    Filed: March 6, 2019
    Publication date: September 10, 2020
    Applicant: Hitachi-Johnson Controls Air Conditioning, Inc
    Inventors: Yasutaka Yoshida, Koji Naito, Hayato Mori, Robert D. Turney, Mohammad N. ELBsat, Michael J. Wenzel
  • Patent number: 10739742
    Abstract: A building energy system includes equipment and an asset allocator configured to determine an optimal allocation of energy loads across the equipment over a prediction horizon. The asset allocator generates several potential scenarios and generates an individual cost function for each potential scenario. Each potential scenario includes a predicted load required by the building and predicted prices for input resources. Each individual cost function includes a cost of purchasing the input resources from utility suppliers. The asset allocator generates a resource balance constraint and solves an optimization problem to determine the optimal allocation of the energy loads across the equipment. Solving the optimization problem includes optimizing an overall cost function that includes a weighted sum of individual cost functions for each potential scenario subject to the resource balance constraint for each potential scenario.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: August 11, 2020
    Assignee: Johnson Controls Technology Company
    Inventors: Ranjeet Kumar, Michael J. Wenzel, Matthew J. Ellis, Mohammad N. Elbsat, Kirk H. Drees, Victor Manuel Zavala Tejeda
  • Patent number: 10742055
    Abstract: A frequency regulation and ramp rate control system includes a battery configured to store and discharge electric power, a battery power inverter configured to control an amount of the electric power in the battery, a photovoltaic power inverter configured to control an electric power output of a photovoltaic field, and a controller. The controller generates a battery power setpoint for the battery power inverter and a photovoltaic power setpoint for the photovoltaic power inverter. The generated setpoints cause the battery power inverter and the photovoltaic power inverter to simultaneously perform both frequency regulation and ramp rate control.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: August 11, 2020
    Assignee: Con Edison Battery Storage, LLC
    Inventors: Mohammad N. ElBsat, Michael J. Wenzel, Brett M. Lenhardt
  • Patent number: 10732584
    Abstract: An energy optimization system for a building includes a processing circuit configured to provide a first bid including one or more first participation hours and a first load reduction amount for each of the one or more first participation hours to a computing system. The processing circuit is configured to operate one or more pieces of building equipment based on one or more first equipment loads and receive one or more awarded or rejected participation hours from the computing system responsive to the first bid. The processing circuit is configured to generate one or more second participation hours, a second load reduction amount for each of the one or more second participation hours, and one or more second equipment loads based on the one or more awarded or rejected participation hours and operate the one or more pieces of building equipment based on the one or more second equipment loads.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: August 4, 2020
    Assignee: Johnson Controls Technology Company
    Inventors: Mohammad N. ElBsat, Michael J. Wenzel, Matthew J. Asmus, James P. Kummer, Peter A. Craig, Robert D. Turney
  • Publication number: 20200218233
    Abstract: A building system includes building equipment operable to consume one or more resources and a control system configured to generate, based on a prediction model, predictions of a load on the building equipment or a price of the one or more resources for a plurality of time steps in an optimization period, solve, based on the predictions, an optimization problem to generate control inputs for the equipment that minimize a predicted cost of consuming the resources over the optimization period, control the building equipment to operate in accordance with the control inputs, monitor an error metric that characterizes an error between the predictions and actual values of the at least one of the load on the building equipment or the price of the one or more resources during the optimization period, detect an occurrence of a trigger condition, and in response to detecting the trigger condition, update the prediction model.
    Type: Application
    Filed: January 4, 2019
    Publication date: July 9, 2020
    Applicant: Johnson Controls Technology Company
    Inventors: Mohammad N. ElBsat, Michael J. Wenzel
  • Patent number: 10700541
    Abstract: A predictive power control system includes a battery configured to store and discharge electric power, a battery power inverter configured to control an amount of the electric power stored or discharged from the battery, and a controller. The controller is configured to predict a power output of a photovoltaic field and use the predicted power output of the photovoltaic field to determine a setpoint for the battery power inverter.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: June 30, 2020
    Assignee: Con Edison Battery Storage, LLC
    Inventors: Mohammad N. ElBsat, Michael J. Wenzel, Brett M. Lenhardt
  • Publication number: 20200193345
    Abstract: A method for determining a participation strategy for a load-following-block rate structure and controlling equipment in accordance with the participation strategy includes selecting a plurality of hedge percentages, running a simulation over a time period for each of the plurality of hedge percentages, determining, for each of the plurality of hedge percentages, a total cost for the time period based on the simulation for the hedge percentage, selecting a recommended hedge percentage based on the total costs, and controlling the equipment to consume a total amount of at least one of energy or power from a utility provider. The recommended hedge percentage of the total amount is priced at a fixed rate and a remainder of the total amount is priced at a variable rate.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 18, 2020
    Applicant: Johnson Controls Technology Company
    Inventors: Mohammad N. ELBSAT, Michael J. WENZEL
  • Publication number: 20200193532
    Abstract: A method includes operating equipment to consume energy resources including energy or power purchased from a utility, and obtaining a block-and-index rate profile for a future time period. The block-and-index rate profile includes a block rate and a block size for each of a plurality of sub-periods in the future time period. The block size for a sub-period identifies an amount of energy or power priced at the block rate for the sub-period. The method also includes applying the block-and-index rate profile in an optimization process for the equipment over the time period, running the optimization process, and allocating energy resources to the equipment over the time period in accordance with a result of the optimization process.
    Type: Application
    Filed: April 17, 2019
    Publication date: June 18, 2020
    Applicant: Johnson Controls Technology Company
    Inventors: Mohammad N. ElBsat, Michael J. Wenzel, Payal Rajendra Pancholi, Abhishek Gupta, Apoorva Gupta
  • Publication number: 20200193346
    Abstract: A building energy system includes equipment operable to consume, store, or generate one or more resources subject to a block-and-index rate structure. The building energy system includes a controller configured to obtain a cost function that represents a block of the resource(s) from the utility provider as being sourced from a first supplier at a fixed rate and a remainder of the resource(s) from the utility provider as being sourced from a second supplier at a variable rate. The controller is configured to optimize the cost function to generate values for one or more decision variables that indicate an amount of resource(s) to purchase, store, generate, or consume at each of a plurality of time steps, and control the equipment to achieve the values of the one or more decision variables at each of the time steps.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 18, 2020
    Applicant: Johnson Controls Technology Company
    Inventors: Mohammad N. ELBSAT, Michael J. Wenzel
  • Patent number: 10673380
    Abstract: An energy storage system includes a photovoltaic energy field, a stationary energy storage device, an energy converter, and a controller. The photovoltaic energy field converts solar energy into electrical energy and charges the stationary energy storage device with the electrical energy. The energy converter converts the electrical energy stored in the stationary energy storage device into AC power at a discharge rate and supplies a campus with the AC power at the discharge rate. The controller generates a cost function of the energy consumption of the campus across a time horizon which relates a cost to operate the campus to the discharge rate of the AC power supplied by the stationary energy storage device. The controller applies constraints to the cost function, determines a minimizing solution to the cost function which satisfies the constraints, and controls the energy converter.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: June 2, 2020
    Assignee: Johnson Controls Technology Company
    Inventors: Michael J. Wenzel, Kirk H. Drees, John I. Ruiz, Matthew J. Ellis, Mohammad N. ElBsat, John H. Burroughs, Juan Esteban Tapiero Bernal
  • Publication number: 20200106385
    Abstract: An energy storage system includes a photovoltaic energy field, a stationary energy storage device, an energy converter, and a controller. The photovoltaic energy field converts solar energy into electrical energy and charges the stationary energy storage device with the electrical energy. The energy converter converts the electrical energy stored in the stationary energy storage device into AC power at a discharge rate and supplies a campus with the AC power at the discharge rate. The controller generates a cost function of the energy consumption of the campus across a time horizon which relates a cost to operate the campus to the discharge rate of the AC power supplied by the stationary energy storage device. The controller applies constraints to the cost function, determines a minimizing solution to the cost function which satisfies the constraints, and controls the energy converter.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Michael J. Wenzel, Kirk H. Drees, John I. Ruiz, Matthew J. Ellis, Mohammad N. ElBsat, John H. Burroughs, Juan Esteban Tapiero Bernal
  • Publication number: 20200096985
    Abstract: A model predictive maintenance system for building equipment that performs operations including obtaining an objective function defining a cost of operating and performing maintenance on the equipment as a function of operating and maintenance decisions for time steps within a time period of a life cycle horizon and including performing a first computation of the objective function under a first scenario where maintenance is performed on the equipment during the period, a result of the first computation indicating a first cost. The operations include performing a second computation under a second scenario in which maintenance is not performed during the period, a result indicating a second cost. The operations include initiating an automated action to perform maintenance on the equipment in accordance with decisions defined by the first scenario if the first cost is less than or equal to the second cost.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Applicant: Johnson Controls Technology Company
    Inventors: MICHAEL J. WENZEL, JINGDUO FAN, MOHAMMAD N. ELBSAT, ROBERT D. TURNEY
  • Publication number: 20200090289
    Abstract: A model predictive maintenance system for building equipment including one or more processing circuits including processors and memory storing instructions that, when executed by the processors, cause the processors to perform operations. The operations include obtaining an objective function that defines a cost of operating the building equipment and performing maintenance on the building equipment as a function of operating decisions and maintenance decisions for the building equipment for time steps within a time period. The operations include performing an optimization of the objective function to generate a maintenance and replacement strategy for the building equipment over a duration of an optimization period. The operations include estimating a savings loss predicted to result from a deviation from the maintenance and replacement strategy. The operations include adjusting an amount of savings expected to be achieved by energy conservation measures for the building equipment based on the savings loss.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 19, 2020
    Applicant: Johnson Controls Technology Company
    Inventors: MOHAMMAD N. ELBSAT, MICHAEL J. WENZEL, JINGDUO FAN, ROBERT D. TURNEY
  • Publication number: 20200089178
    Abstract: An energy storage system for a building includes a battery asset configured to store electricity and discharge the stored electricity for use in satisfying a building electric load. The system includes a planning tool configured to identify one or more selected functionalities of the energy storage system and generate a cost function defining a cost of operating the energy storage system over an optimization period. The cost function includes a term for each of the selected functionalities. The planning tool is configured to generate optimization constraints based on the selected functionalities, attributes of the battery asset, and the electric energy load to be satisfied. The planning tool is configured to optimize the cost function to determine optimal power setpoints for the battery asset at each of a plurality of time steps of the optimization period.
    Type: Application
    Filed: September 24, 2019
    Publication date: March 19, 2020
    Inventors: Mohammad N. Elbsat, Michael J. Wenzel, Kirk H. Drees
  • Patent number: 10591178
    Abstract: A frequency response optimization system includes a battery configured to store and discharge electric power, a power inverter configured to control an amount of the electric power stored or discharged from the battery at each of a plurality of time steps during a frequency response period, and a frequency response controller. The frequency response controller is configured to receive a regulation signal from an incentive provider, determine statistics of the regulation signal, use the statistics of the regulation signal to generate an optimal frequency response midpoint that achieves a desired change in a state-of-charge (SOC) of the battery while participating in a frequency response program, and use the midpoints to determine optimal battery power setpoints for the power inverter. The power inverter is configured to use the optimal battery power setpoints to control the amount of the electric power stored or discharged from the battery.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: March 17, 2020
    Assignee: Con Edison Battery Storage, LLC
    Inventors: Michael J. Wenzel, Kirk H. Drees, Mohammad N. ElBsat
  • Patent number: 10594153
    Abstract: A frequency response optimization system includes a battery configured to store and discharge electric power, a power inverter configured to control an amount of the electric power stored or discharged from the battery, a high level controller, and a low level controller. The high level controller is configured to receive a regulation signal from an incentive provider, determine statistics of the regulation signal, and use the statistics of the regulation signal to generate an optimal frequency response midpoint. The optimal midpoint achieves a desired change in the state-of-charge of the battery while participating in a frequency response program. The low level controller is configured to use the midpoints to determine optimal battery power setpoints for the power inverter. The power inverter is configured to use the optimal battery power setpoints to control an amount of the electric power stored or discharged from the battery.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: March 17, 2020
    Assignee: Con Edison Battery Storage, LLC
    Inventors: Radu Dorneanu, Michael J. Wenzel, Mohammad N. Elbsat, Kirk H. Drees