Patents by Inventor Mohammad RASHIDI
Mohammad RASHIDI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11635450Abstract: A method for the patterning and control of single electrons on a surface is provided that includes implementing scanning tunneling microscopy hydrogen lithography with a scanning probe microscope to form charge structures with one or more confined charges; performing a series of field-free atomic force microscopy measurements on the charge structures with different tip heights, where interaction between the tip and the confined charge are elucidated; and adjusting tip heights to controllably position charges within the structures to write a given charge state. The present disclose also provides a Gibb's distribution machine formed with the method for the patterning and control of single electrons on a surface. A multi bit true random number generator and neural network learning hardware formed with the above described method are also provided.Type: GrantFiled: June 29, 2021Date of Patent: April 25, 2023Assignees: Quantum Silicon inc., National Research Council of CanadaInventors: Robert Wolkow, Mohammad Rashidi, Wyatt Vine, Thomas Dienel, Lucian Livadaru, Taleana Huff, Jacob Retallick, Konrad Walus, Jason Pitters, Roshan Achal
-
Publication number: 20230093537Abstract: An atomic orbital based memory storage is provided that includes a plurality of surface atoms forming dangling bonds (DBs) and a subset of the plurality of surface atoms passivated with spatial control to form covalent bonds with hydrogen, deuterium, or a combination thereof. The atomic orbital based data storage that can be rewritten and corrected as needed. The resulting data storage is also archival and capable of high data densities than any known storage as the data is retained in a binary storage or a given orbital being passivated or a dangling bond (DB). A method of forming and reading the atomic orbital data storage is also provided. The method including selectively removing covalent bonds to form dangling bonds (DBs) extending from a surface atom by hydrogen lithography and imaging the covalent bonds spatially to read the atomic orbital data storage.Type: ApplicationFiled: November 28, 2022Publication date: March 23, 2023Applicants: National Research Council of Canada, Quantum Silicon Inc., The Governors of the University of AlbertaInventors: Roshan Achal, Robert A. Wolkow, Jason Pitters, Martin Cloutier, Mohammad Rashidi, Marco Taucer, Taleana Huff
-
Patent number: 11557337Abstract: An atomic orbital based memory storage is provided that includes a plurality of surface atoms forming dangling bonds (DBs) and a subset of the plurality of surface atoms passivated with spatial control to form covalent bonds with hydrogen, deuterium, or a combination thereof. The atomic orbital based data storage that can be rewritten and corrected as needed. The resulting data storage is also archival and capable of high data densities than any known storage as the data is retained in a binary storage or a given orbital being passivated or a dangling bond (DB). A method of forming and reading the atomic orbital data storage is also provided. The method including selectively removing covalent bonds to form dangling bonds (DBs) extending from a surface atom by hydrogen lithography and imaging the covalent bonds spatially to read the atomic orbital data storage.Type: GrantFiled: June 19, 2019Date of Patent: January 17, 2023Assignees: National Research Council of Canada, Quantum Silicon Inc., The Governors of the University of AlbertaInventors: Roshan Achal, Robert A. Wolkow, Jason Pitters, Martin Cloutier, Mohammad Rashidi, Marco Taucer, Taleana Huff
-
Publication number: 20220155339Abstract: A method for assessing the quality of a tip of a scanning probe microscope (SPM) includes recording an SPM image, extracting a plurality of images of dangling bonds from the SPM image, feeding the extracted images of dangling bonds into a convolution neural network one image at a time, analyzing each of the plurality of images of dangling bonds using the convolution neural network, assigning each of the plurality of images of dangling bonds one of a sharp tip status or a double tip status, and determining whether the number of the plurality of images of dangling bonds of the SPM image assigned the double tip status exceeds a predetermined threshold. A method of automatically conditioning a tip of a scanning probe microscope (SPM) during imaging of a sample and a method of mass-producing atomistic quantum dots, qubits, or particular atom orbital occupation are also provided.Type: ApplicationFiled: January 22, 2022Publication date: May 19, 2022Applicants: Quantum Silicon Inc., The Governors of the University of AlbertaInventors: Mohammad Rashidi, Robert Wolkow
-
Patent number: 11320455Abstract: A method for assessing the quality of a tip of a scanning probe microscope (SPM) includes recording an SPM image, extracting a plurality of images of dangling bonds from the SPM image, feeding the extracted images of dangling bonds into a convolution neural network one image at a time, analyzing each of the plurality of images of dangling bonds using the convolution neural network, assigning each of the plurality of images of dangling bonds one of a sharp tip status or a double tip status, and determining whether the number of the plurality of images of dangling bonds of the SPM image assigned the double tip status exceeds a predetermined threshold. A method of automatically conditioning a tip of a scanning probe microscope (SPM) during imaging of a sample and a method of mass-producing atomistic quantum dots, qubits, or particular atom orbital occupation are also provided.Type: GrantFiled: March 19, 2019Date of Patent: May 3, 2022Assignees: The Governors of the University of Alberta, Quantum Silicon Inc.Inventors: Mohammad Rashidi, Robert Wolkow
-
Publication number: 20220130033Abstract: A method for autonomously applying a dangling bond pattern to a substrate for atom scale device fabrication includes inputting the pattern, initiating a patterning process, scanning the substrate using a scanning probe microscope (SPM) to generate an SPM image of the substrate, feeding the SPM image into a trained convolution neural network (CNN), analyzing the SPM image using the CNN to identify substrate defects, determining a defect free substrate area for pattern application; and applying the pattern to the substrate in that area. An atom scale electronic component includes functional patches on a substrate and wires electrically connecting the functional patches. Training a CNN includes recording a Scanning Tunneling Microscope (STM) image of the substrate, extracting images of defects from the STM image, labeling pixel-wise the defect images, and feeding the extracted and labeled images of defects into a CNN to train the CNN for semantic segmentation.Type: ApplicationFiled: February 14, 2020Publication date: April 28, 2022Applicant: Quantum Silicon Inc.Inventors: Mohammad Rashidi, Jeremiah Croshaw, Robert Wolkow
-
Patent number: 11258253Abstract: A control scheme for controlling power sharing among a plurality of parallel connected DC voltage sources is disclosed. Each of the DC voltage sources in parallel connection is an independent DC power system, which can be an suitable DC power supply that can provide power to a load. By way of example, the present disclosure describes a DC power system that includes a power source, an energy storage unit and a triple active bridge converter that provides power to the common load. Each independent DC power system has its own controller that shares a DC bus with the other DC power system controllers. Each controller executes non-transitory instructions to provide a reference voltage V* to its respective independent DC power system and implements a control scheme that changes the voltage reference to ensure that each independent DC power system only provides a certain share of the load current/power.Type: GrantFiled: September 18, 2020Date of Patent: February 22, 2022Assignee: EATON INTELLIGENT POWER LIMITEDInventors: Mohammad Rashidi, Mehdy Khayamy, Richard Fons
-
Publication number: 20210373045Abstract: A method for assessing the quality of a tip of a scanning probe microscope (SPM) includes recording an SPM image, extracting a plurality of images of dangling bonds from the SPM image, feeding the extracted images of dangling bonds into a convolution neural network one image at a time, analyzing each of the plurality of images of dangling bonds using the convolution neural network, assigning each of the plurality of images of dangling bonds one of a sharp tip status or a double tip status, and determining whether the number of the plurality of images of dangling bonds of the SPM image assigned the double tip status exceeds a predetermined threshold. A method of automatically conditioning a tip of a scanning probe microscope (SPM) during imaging of a sample and a method of mass-producing atomistic quantum dots, qubits, or particular atom orbital occupation are also provided.Type: ApplicationFiled: March 19, 2019Publication date: December 2, 2021Applicants: Quantum Silicon Inc., The Governors of the University of AlbertaInventors: Mohammad Rashidi, Robert Wolkow
-
Publication number: 20210325429Abstract: A method for the patterning and control of single electrons on a surface is provided that includes implementing scanning tunneling microscopy hydrogen lithography with a scanning probe microscope to form charge structures with one or more confined charges; performing a series of field-free atomic force microscopy measurements on the charge structures with different tip heights, where interaction between the tip and the confined charge are elucidated; and adjusting tip heights to controllably position charges within the structures to write a given charge state. The present disclose also provides a Gibb's distribution machine formed with the method for the patterning and control of single electrons on a surface. A multi bit true random number generator and neural network learning hardware formed with the above described method are also provided.Type: ApplicationFiled: June 29, 2021Publication date: October 21, 2021Applicants: Quantum Silicon Inc., National Research Council of Canada, The University of British ColumbiaInventors: Robert Wolkow, Mohammad Rashidi, Wyatt Vine, Thomas Dienel, Lucian Livadaru, Taleana Huff, Jacob Retallick, Konrad Walus, Jason Pitters, Roshan Achal
-
Publication number: 20210272625Abstract: An atomic orbital based memory storage is provided that includes a plurality of surface atoms forming dangling bonds (DBs) and a subset of the plurality of surface atoms passivated with spatial control to form covalent bonds with hydrogen, deuterium, or a combination thereof. The atomic orbital based data storage that can be rewritten and corrected as needed. The resulting data storage is also archival and capable of high data densities than any known storage as the data is retained in a binary storage or a given orbital being passivated or a dangling bond (DB). A method of forming and reading the atomic orbital data storage is also provided. The method including selectively removing covalent bonds to form dangling bonds (DBs) extending from a surface atom by hydrogen lithography and imaging the covalent bonds spatially to read the atomic orbital data storage.Type: ApplicationFiled: June 19, 2019Publication date: September 2, 2021Applicants: National Research Council of Canada, Quantum Silicon Inc., The Governors of the University of AlbertaInventors: Roshan Achal, Robert A. Wolkow, Jason Pitters, Martin Cloutier, Mohammad Rashidi, Marco Taucer, Taleana Huff
-
Patent number: 11047877Abstract: A method for the patterning and control of single electrons on a surface is provided that includes implementing scanning tunneling microscopy hydrogen lithography with a scanning probe microscope to form charge structures with one or more confined charges; performing a series of field-free atomic force microscopy measurements on the charge structures with different tip heights, where interaction between the tip and the confined charge are elucidated; and adjusting tip heights to controllably position charges within the structures to write a given charge state. The present disclose also provides a Gibb's distribution machine formed with the method for the patterning and control of single electrons on a surface. A multi bit true random number generator and neural network learning hardware formed with the above described method are also provided.Type: GrantFiled: September 28, 2018Date of Patent: June 29, 2021Assignee: Quantum Silicon Inc.Inventors: Robert Wolkow, Mohammad Rashidi, Wyatt Vine, Thomas Dienel, Lucian Livadaru, Taleana Huff, Jacob Retallick, Konrad Walus
-
Publication number: 20210184115Abstract: A multiple-atom germanium quantum dot is provided that includes multiple dangling bonds on an otherwise H-terminated germanium surface, each dangling bonds having one of three ionization states of +1, 0 or ?1 and corresponding respectively to 0, 1, or 2 electrons in a dangling bond state. The dangling bonds together in close proximity and having the dangling bond states energetically in the germanium band gap with selective control of the ionization state of one of the dangling bonds. A new class of electronics elements is provided through the inclusion of at least one input and at least one output to the multiple dangling bonds. Selective modification or creation of a dangling bond is also detailed.Type: ApplicationFiled: February 4, 2021Publication date: June 17, 2021Applicant: Quantum Silicon Inc.Inventors: Robert A. Wolkow, Roshan Achal, Taleana Huff, Hatem Labidi, Lucian Livadaru, Paul Piva, Mohammad Rashidi
-
Publication number: 20210091564Abstract: A control scheme for controlling power sharing among a plurality of parallel connected DC voltage sources is disclosed. Each of the DC voltage sources in parallel connection is an independent DC power system, which can be an suitable DC power supply that can provide power to a load. By way of example, the present disclosure describes a DC power system that includes a power source, an energy storage unit and a triple active bridge converter that provides power to the common load. Each independent DC power system has its own controller that shares a DC bus with the other DC power system controllers. Each controller executes non-transitory instructions to provide a reference voltage V* to its respective independent DC power system and implements a control scheme that changes the voltage reference to ensure that each independent DC power system only provides a certain share of the load current/power.Type: ApplicationFiled: September 18, 2020Publication date: March 25, 2021Inventors: Mohammad RASHIDI, Mehdy KHAYAMY, Richard FONS
-
Patent number: 10937959Abstract: A multiple-atom silicon quantum dot is provided that includes multiple dangling bonds on an otherwise H-terminated silicon surface, each dangling bonds having one of three ionization states of +1, 0 or ?1 and corresponding respectively to 0, 1, or 2 electrons in a dangling bond state. The dangling bonds together in close proximity and having the dangling bond states energetically in the silicon band gap with selective control of the ionization state of one of the dangling bonds. A new class of electronics elements is provided through the inclusion of at least one input and at least one output to the multiple dangling bonds. Selective modification or creation of a dangling bond is also detailed.Type: GrantFiled: July 19, 2017Date of Patent: March 2, 2021Assignee: QUANTUM SILICON INC.Inventors: Robert A. Wolkow, Roshan Achal, Taleana Huff, Hatem Labidi, Lucian Livadaru, Paul Piva, Mohammad Rashidi
-
Publication number: 20200249256Abstract: A method for the patterning and control of single electrons on a surface is provided that includes implementing scanning tunneling microscopy hydrogen lithography with a scanning probe microscope to form charge structures with one or more confined charges; performing a series of field-free atomic force microscopy measurements on the charge structures with different tip heights, where interaction between the tip and the confined charge are elucidated; and adjusting tip heights to controllably position charges within the structures to write a given charge state. The present disclose also provides a Gibb's distribution machine formed with the method for the patterning and control of single electrons on a surface. A multi bit true random number generator and neural network learning hardware formed with the above described method are also provided.Type: ApplicationFiled: September 28, 2018Publication date: August 6, 2020Applicant: Quantum Silicon Inc.Inventors: Robert Wolkow, Mohammad Rashidi, Wyatt Vine, Thomas Dienel, Lucian Livadaru, Taleana Huff, Jacob Retallick, Konrad Walus
-
Publication number: 20200044150Abstract: A multiple-atom silicon quantum dot is provided that includes multiple dangling bonds on an otherwise H-terminated in silicon surface, each dangling bonds having one of three ionization states of +1, 0 or ?1 and corresponding respectively to 0, 1, or 2 electrons in a dangling bond state. The dangling bonds together in close proximity and having the dangling bond states energetically in the silicon band gap with selective control of the ionization state of one of the dangling bonds. A new class of electronics elements is provided through the inclusion of at least one input and at least one output to the multiple dangling bonds. Selective modification or creation of a dangling bond is also detailed.Type: ApplicationFiled: July 19, 2017Publication date: February 6, 2020Inventors: Robert A. C, Roshan ACHAI, Taleana HUFF, Hatem LABIDI, Lucian LIVADARU, Paul PIVA, Mohammad RASHIDI