Patents by Inventor Mohammad S. Mobin

Mohammad S. Mobin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9385897
    Abstract: Methods and apparatus are provided for adapting transmitter equalization coefficients based on receiver gain adaptation. Equalization coefficients of a transmitter that communicates over a channel with a receiver are adapted by determining if a gain value for an amplifier in the receiver is within a limit of the amplifier; and preventing one or more adjustments to the transmitter equalization coefficients if the gain value does not satisfy the upper or lower limit of the amplifier. The gain adjustments comprise, for example, up and down requests for the transmitter equalization coefficients. One or more enable flags can optionally be set based on whether the gain value is within the limit of the amplifier.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: July 5, 2016
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Vladimir Sindalovsky, Mohammad S. Mobin, Lane A. Smith
  • Publication number: 20160142233
    Abstract: Described embodiments provide for, in a SerDes device, an adaptation process that adjusts data path gain through programmable-bias based on process, voltage, temperature (PVT) and data rate changes. Such adaptation process extends bias current dynamic range, and low frequency gain can be programmed to a desired target range of values for a given variable gain amplifier (VGA) setting at any PVT and data rate corner. A receive (RX) data path structure auto-adapts data path gain through programmable bias based on sensed PVT and data rate changes. The low frequency attenuation/gain range is extended, and can be programmed to a desirable targeted range by a SerDes device RX adaptive process for a given VGA and linear equalizer (LEQ) setting at any given PVT and data rate condition.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 19, 2016
    Applicant: LSI CORPORATION
    Inventors: Mohammad S. Mobin, Weiwei Mao, Brett D. Hardy
  • Patent number: 9325537
    Abstract: In described embodiments, process, voltage, temperature (PVT) compensation in a serializer/deserializer (SerDes) device employs a closed loop adaptation compensation that is incorporated into the SerDes receiver adaptation process. A detection method, where the adapted decision feedback equalizer (DFE) target level (e.g., tap H0) is monitored, employs this DFE target level when implementing a closed loop variable gain amplifier adaptation. The DFE target level in conjunction with the VGA level is used to control the PVT setting to maintain target SerDes data path gain by detecting aPVT corner condition. The detected PVT corner condition is employed to generate a control signal to further adjust the LEQ and DFE data path differential pair gain as required by the PVT condition.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: April 26, 2016
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Mohammad S. Mobin, Weiwei Mao, Chintan M. Desai, Freeman Y. Zhong, Ye Liu
  • Patent number: 9325546
    Abstract: Described embodiments provide for, in a SerDes device, an adaptation process that adjusts data path gain through programmable-bias based on process, voltage, temperature (PVT) and data rate changes. Such adaptation process extends bias current dynamic range, and low frequency gain can be programmed to a desired target range of values for a given variable gain amplifier (VGA) setting at any PVT and data rate corner. A receive (RX) data path structure auto-adapts data path gain through programmable bias based on sensed PVT and data rate changes. The low frequency attenuation/gain range is extended, and can be programmed to a desirable targeted range by a SerDes device RX adaptive process for a given VGA and linear equalizer (LEQ) setting at any given PVT and data rate condition.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: April 26, 2016
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Mohammad S. Mobin, Weiwei Mao, Brett D. Hardy
  • Patent number: 9294314
    Abstract: A communication system having a receiver with a linear path and a nonlinear path. As the receiver receives a data signal, it adaptively equalizes the received signal, and amplitude-limits the equalized signal in the nonlinear path using a saturable amplifier limiter or the like. A slicer extracts data from the limited equalized received signal. In the linear path, a clock recovery circuit generates a clock signal from the equalized received signal. A delay circuit in the linear path at least partially compensates for propagation delay in the limiter. Having the clock recovery occur in other than the nonlinear path, a low jitter clock is generated. The limiter enhances the vertical opening of the data eye by increasing the rise and fall times of the limited signal, providing more noise margin for the slicer to operate with and a greater timing margin in which to sample the sliced data.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: March 22, 2016
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Mohammad S. Mobin, Pervez M. Aziz, Ye Liu
  • Publication number: 20160072650
    Abstract: Described embodiments provide for, in a SerDes device, an adaptation process that adjusts termination impedance automatically to obtain a tuned termination. The termination adaptation is realized with a ‘biased’ bang-bang phase detector (BBPD) that biases the weights applied to UP and DOWN outputs of the phase detector. Through an optimization process, the system locks to data eye corners, and thereby is able to optimize termination though a predetermined criteria, such as signal to noise ratio (SNR), horizontal eye (H-) margin, vertical eye (V-) margin or joint SNR and H-/V-margin optimization. As part of the receiver equalization, adaptive termination tuning is performed after the SerDes receiver (RX) path is initially powered-up by tuning the termination above and below its current initial setting and performing the optimization process.
    Type: Application
    Filed: September 6, 2014
    Publication date: March 10, 2016
    Inventors: Mohammad S. Mobin, Sunil Srinivasa, Vladimir Sindalovsky, Amaresh V. Malipatil, Pervez M. Aziz
  • Publication number: 20150263848
    Abstract: Described embodiments provide for, in a clock and data recovery (CDR) circuit, detection of loss of acquisition and CDR restarting with corrective integral accumulator register seeding and gearshift restarting. In described embodiments, a mechanism is employed to cause faster loss of lock condition if the CDR circuit directed on an incorrect acquisition trajectory, actual loss of CDR lock is then detected, and CDR acquisition is recovered with corrective integral accumulator seeding.
    Type: Application
    Filed: April 21, 2014
    Publication date: September 17, 2015
    Applicant: LSI Corporation
    Inventors: Mohammad S. Mobin, Weiwei Mao, Chintan M. Desai, Ye Liu
  • Publication number: 20150256364
    Abstract: Described embodiments provide for de-coupling between adaptation of decision feedback equalizer (DFE) filter taps and transmitter (TX) post cursor filtering in group delay (GD)-based adaptation. Consequently, an excessive build-up of transmitter post cursor effects and its excessive equalization cancellation by the DFE may be substantially reduced or eliminated. By breaking this coupling, a transmitter does not over equalize a signal, the DFE does not attempt to “undo” the over equalization, and a variable gain amplifier (VGA) in the receiver front end data path generally does not apply gain to amplify the signal back again due to the reduced DC level. GD-based TX post cursor adaptation may reduce over equalization effect and hence save power and increase performance by not over equalizing the signal.
    Type: Application
    Filed: April 9, 2014
    Publication date: September 10, 2015
    Applicant: LSI Corporation
    Inventors: Mohammad S. Mobin, Vladimir Sindalovsky
  • Publication number: 20150249555
    Abstract: In described embodiments, process, voltage, temperature (PVT) compensation in a serializer/deserializer (SerDes) device employs a closed loop adaptation compensation that is incorporated into the SerDes receiver adaptation process. A detection method, where the adapted decision feedback equalizer (DFE) target level (e.g., tap H0) is monitored, employs this DFE target level when implementing a closed loop variable gain amplifier adaptation. The DFE target level in conjunction with the VGA level is used to control the PVT setting to maintain target SerDes data path gain by detecting aPVT corner condition. The detected PVT corner condition is employed to generate a control signal to further adjust the LEQ and DFE data path differential pair gain as required by the PVT condition.
    Type: Application
    Filed: April 3, 2014
    Publication date: September 3, 2015
    Applicant: LSI Corporation
    Inventors: Mohammad S. Mobin, Weiwei Mao, Chintan M. Desai, Freeman Y. Zhong, Ye Liu
  • Patent number: 9106462
    Abstract: Described embodiments include a process and apparatus that takes into account the operating voltage and temperature (VT) variations of a SERDES receiver implemented in an integrated circuit (IC) or system-on-chip (SoC). An analog equalizer (AEQ) adaptation loop and a decision feedback equalizer (DFE) adaptation loop are disabled after the loops have converged or stabilized the parameters of the AEQ and DFE. While the AFE and DFE adaptation loops are disabled, certain monitor coefficients related to signals corrected by the AFE and DFE are adapted and metrics derived therefrom are generated. The metrics are compared to threshold values to check if they have sufficiently changed over time to warrant re-enabling of the AFE and DFE adaptation loops.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: August 11, 2015
    Assignee: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.
    Inventors: Pervez M. Aziz, Amaresh V. Malipatil, Mohammad S. Mobin
  • Patent number: 9025655
    Abstract: A method of adjusting a post-cursor tap weight in a transmitter FIR filter in a high-speed digital data transmission system. A receiver, over a forward channel, receives a signal from the transmitter and equalizes the received signal using an adaptive analog equalizer coupled to the forward channel and a decision feedback equalizer (DFE) coupled to the analog equalizer. A gain coefficient used to adjust the peaking by the analog equalizer is adapted using an error signal generated by the DFE. The post-cursor tap weight of the transmitter filter is adjusted up or down based on a comparison of the gain coefficient to a set. of limits. The post-cursor tap weight is transmitted to the transmitter over a reverse channel and then equalizers in the receiver readapt. Alternatively, eye opening data and a DFE tap coefficient are used to determine whether the post-cursor tap weight is adjusted up or down.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: May 5, 2015
    Assignee: LSI Corporation
    Inventors: Rajesh Ramadoss, Mohammad S. Mobin, Thomas F. Gibbons, Jr.
  • Publication number: 20150110165
    Abstract: A method of adjusting a post-cursor tap weight in a transmitter FIR filter in a high-speed digital data transmission system. A receiver, over a forward channel, receives a signal from the transmitter and equalizes the received signal using an adaptive analog equalizer coupled to the forward channel and a decision feedback equalizer (DFE) coupled to the analog equalizer. A gain coefficient used to adjust the peaking by the analog equalizer is adapted using an error signal generated by the DFE. The post-cursor tap weight of the transmitter filter is adjusted up or down based on a comparison of the gain coefficient to a set. of limits. The post-cursor tap weight is transmitted to the transmitter over a reverse channel and then equalizers in the receiver readapt. Alternatively, eye opening data and a DFE tap coefficient are used to determine whether the post-cursor tap weight is adjusted up or down.
    Type: Application
    Filed: November 6, 2013
    Publication date: April 23, 2015
    Applicant: LSI Corporation
    Inventors: Rajesh Ramadoss, Mohammad S. Mobin, Thomas F. Gibbons
  • Patent number: 8953665
    Abstract: In described embodiments, data pattern-based detection of loss of signal (LOS) is employed for a receive path of serializer/deserializer (SerDes) devices. Pattern-based LOS detection allows for detection of data loss over variety of types of connection media, and is generally insensitive to signal attenuation. More specifically, some described embodiments disclose reliable pattern-based detection of LOS across different connection media for incoming receive data when discreet time decision feedback equalization (DFE) is employed.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: February 10, 2015
    Assignee: LSI Corporation
    Inventors: Vladimir Sindalovsky, Mohammad S. Mobin, Lane A. Smith
  • Patent number: 8923371
    Abstract: A SerDes data sampling controller that includes a gear shifting data sampling clock that zeroes the data sampling skew at the center of the unit interval during the CDR phase lock stage, and then skews the data sample timing away from the center of the unit interval as the DFE coefficients adapt during the data transfer stage. This allows the controller to implement the best (unskewed) data sample timing during the CDR phase locking stage, and then skew the data sample timing after the DFE coefficients have adapted to provide the best (skewed) data sample timing for data bit sampling during the data transfer stage. The data sampling gear shifter may apply a variable skew value to the transition sampling or quadrature (Q) data sampling clock differentially varying the quadrature (Q) transition sampling clock from the inphase (I) data sampling clock.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 30, 2014
    Assignee: LSI Corporation
    Inventors: Vladimir Sindalovsky, Lane A. Smith, Mohammad S. Mobin
  • Patent number: 8902963
    Abstract: Methods and apparatus are provided for determining the threshold position of one or mote DFE latches using an evaluation of the incoming data eye. A threshold position is determined for one or more transition latches employed by a decision-feedback equalizer by obtaining a plurality of samples of a data eye using a data eye monitor; obtaining a vertical eye opening metric from the data eye monitor; and determining the threshold position for the one or more transition latches based on the vertical eye opening metric. A decision-feedback equalizer is also disclosed that comprises at least one data latch having a data threshold; and at least one transition latching having a transition threshold, wherein the transition threshold and the data threshold ate unequal.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: December 2, 2014
    Assignee: Agere Systems Inc.
    Inventors: Pervez M Aziz, Mohammad S Mobin
  • Patent number: 8867602
    Abstract: A tap coefficient control circuit and a method for controlling a tap coefficient for a decision feedback equalizer are disclosed. The method includes adjusting a correction voltage applied to the tap coefficient based on a first tap quantization and detecting a decision feedback equalizer tap convergence. After the decision feedback equalizer tap convergence is detected, the method adjusts the correction voltage applied to the tap coefficient based on a second tap quantization, wherein the second tap quantization is different from the first tap quantization.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: October 21, 2014
    Assignee: LSI Corporation
    Inventors: Mohammad S. Mobin, Weiwei Mao, Ye Liu, Brett D. Hardy, Lane A. Smith
  • Patent number: 8861580
    Abstract: Methods and apparatus are provided for determining one or more channel compensation parameters based on data eye monitoring. According to one aspect of the invention, a method is provided for evaluating the quality of a data eye associated with a signal. The received signal is sampled for a plurality of different phases, for example, using at least two latches, and the samples are evaluated to identify when the signal crosses a predefined amplitude value, such as a zero crossing. It is determined whether the points of predefined amplitude crossing satisfy one or more predefined criteria. One or more parameters of one or more channel compensation techniques can optionally be adjusted based on a result of the determining step. One or more parameters of an adjacent transmitter can also be adjusted to reduce near end cross talk based on a result of the determining step.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: October 14, 2014
    Assignee: Agere Systems LLC
    Inventors: Christopher J. Abel, Mohammad S. Mobin, Gregory W. Sheets, Lane A. Smith
  • Patent number: 8837626
    Abstract: Described embodiments adjust configurable parameters of at least one filter of a communication system. The method includes conditioning, by an analog front end (AFE) of a receiver in the communication system, an input signal applied to the receiver. Sampled values of the conditioned input signal are generated and digitized. An error detection module generates an error signal based on digitized values of the input signal and a target value. A decision feedback equalizer generates an adjustment signal based on the digitized values of the input signal and values of the error signal. A summer subtracts the adjustment signal from the conditioned input signal, generating an adjusted input signal. An adaptation module determines a conditional adaptation signal based on a comparison of sampled values of the adjusted input signal and values of the error signal. The adaptation module adjusts a transfer function of at least one filter based on the conditional adaptation signal.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: September 16, 2014
    Assignee: LSI Corporation
    Inventors: Amaresh Malipatil, Pervez M. Aziz, Mohammad S. Mobin, Ye Liu
  • Patent number: 8816776
    Abstract: An apparatus comprises a clock and data recovery system, and a loss of lock detector at least partially incorporated within or otherwise associated with the clock and data recovery system. The loss of lock detector is configured to generate a loss of lock signal responsive to phase adjustment requests generated for a clock signal in the clock and data recovery system. By way of example, the loss of lock signal may have a first logic level indicative of the phase adjustment requests occurring at a first rate associated with a lock condition and a second logic level indicative of the phase adjustment requests occurring at a second rate lower than the first rate. Absolute values of respective phase increments each associated with multiple up and down phase requests may be accumulated, and the loss of lock signal generated as a function of the accumulated phase increment absolute values.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: August 26, 2014
    Assignee: LSI Corporation
    Inventors: Vladimir Sindalovsky, Mohammad S. Mobin, Lane A. Smith
  • Publication number: 20140233619
    Abstract: In described embodiments, data pattern-based detection of loss of signal (LOS) is employed for a receive path of serializer/deserializer (SerDes) devices. Pattern-based LOS detection allows for detection of data loss over variety of types of connection media, and is generally insensitive to signal attenuation. More specifically, some described embodiments disclose reliable pattern-based detection of LOS across different connection media for incoming receive data when discreet time decision feedback equalization (DFE) is employed.
    Type: Application
    Filed: February 15, 2013
    Publication date: August 21, 2014
    Applicant: LSI CORPORATION
    Inventors: Vladimir Sindalovsky, Mohammad S. Mobin, Lane A. Smith