Patents by Inventor Mohammadreza Teimoorisichani

Mohammadreza Teimoorisichani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240135557
    Abstract: A framework for gantry alignment of a multimodality medical scanner. First image data of a non-radioactive structure is acquired by using intrinsic radiation emitted by scintillator crystals of detectors in a first gantry of the multimodality medical scanner. Second image data of the non-radioactive structure is acquired using a second gantry for another modality of the multimodality medical scanner. Image reconstruction may be performed based on the first and second image data of the non-radioactive structure to generate first and second reconstructed image volumes. A gantry alignment transformation that aligns the first and second reconstructed image volumes may then be determined.
    Type: Application
    Filed: December 13, 2023
    Publication date: April 25, 2024
    Inventors: Paul Schleyer, Deepak Bharkhada, Harold E. Rothfuss, Mohammadreza Teimoorisichani, Dieter Ritter
  • Patent number: 11880986
    Abstract: A framework for gantry alignment of a multimodality medical scanner. First image data of a non-radioactive structure is acquired by using intrinsic radiation emitted by scintillator crystals of detectors in a first gantry of the multimodality medical scanner. Second image data of the non-radioactive structure is acquired using a second gantry for another modality of the multimodality medical scanner. Image reconstruction may be performed based on the first and second image data of the non-radioactive structure to generate first and second reconstructed image volumes. A gantry alignment transformation that aligns the first and second reconstructed image volumes may then be determined.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: January 23, 2024
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Paul Schleyer, Deepak Bharkhada, Harold E. Rothfuss, Mohammadreza Teimoorisichani, Dieter Ritter
  • Publication number: 20230341489
    Abstract: A method for generating transmission information in a time-of-flight positron emission tomography (PET) scanner having a patient tunnel and a plurality of PET detector rings. The PET scanner uses continuous bed motion to move a patient bed and patient through the patient tunnel. The patient receives a positron-emitting radioisotope dose prior to undergoing a PET scan. The method includes storing a positron-emitting radioisotope in a radiation shielded container. The method also includes moving the radioisotope into a stationary vessel located adjacent to the PET detectors and within a field of view of the PET scanner at substantially the same time that the patient receives the radioisotope dose to form a stationary transmission source wherein transmission information is generated while the bed undergoes continuous bed motion. Further, the method includes withdrawing the radioisotope from the vessel when the PET scan is complete and storing the radioisotope in the container.
    Type: Application
    Filed: April 20, 2022
    Publication date: October 26, 2023
    Inventors: James Hamill, Mohammadreza Teimoorisichani, Charles Russell Buchanan
  • Publication number: 20230266489
    Abstract: Various systems and computer-implemented methods for background radiation based attenuation correction are disclosed. Nuclear scan data including scan data associated with a first imaging modality and background radiation data are received. An initial background radiation attenuation map is generated and provided to a trained model configured to generate a final background radiation based attenuation map from the initial background radiation attenuation map. Attenuation correction of the scan data associated with the first imaging modality is performed based on the background radiation based attenuation map and a nuclear image is reconstructed from attenuation corrected scan data associated with the first imaging modality.
    Type: Application
    Filed: September 9, 2020
    Publication date: August 24, 2023
    Inventors: Deepak Bharkhada, Vladimir Panin, Mohammadreza Teimoorisichani, Maurizio Conti
  • Publication number: 20230252694
    Abstract: Various systems and computer-implemented methods for background radiation based attenuation correction are disclosed. A first set of nuclear scan data including first scan data associated with a first imaging modality having a long-axial field of view and first background radiation data is received and a first background radiation attenuation map is generated by applying a trained machine-learning model to the first background radiation data. A first set of attenuation corrected scan data is generated by performing attenuation correction of the first scan data based only on the first background radiation attenuation map and a first image is reconstructed from the first set of attenuation corrected scan data. The disclosed background radiation based attenuation correction may be used for longer duration scans, repeat scans, and/or low-dose clinical applications, such as pediatric applications, theranostics, and/or other suitable applications.
    Type: Application
    Filed: August 21, 2021
    Publication date: August 10, 2023
    Inventors: Deepak Bharkhada, Vladimir Panin, Mohammadreza Teimoorisichani, Maurizio Conti, Hasan Sari
  • Publication number: 20220398754
    Abstract: A framework for gantry alignment of a multimodality medical scanner. First image data of a non-radioactive structure is acquired by using intrinsic radiation emitted by scintillator crystals of detectors in a first gantry of the multimodality medical scanner. Second image data of the non-radioactive structure is acquired using a second gantry for another modality of the multimodality medical scanner. Image reconstruction may be performed based on the first and second image data of the non-radioactive structure to generate first and second reconstructed image volumes. A gantry alignment transformation that aligns the first and second reconstructed image volumes may then be determined.
    Type: Application
    Filed: June 9, 2021
    Publication date: December 15, 2022
    Inventors: Paul Schleyer, Deepak Bharkhada, Harold E. Rothfuss, Mohammadreza Teimoorisichani, Dieter Ritter