Patents by Inventor Mohammed Ismail Elnaggar

Mohammed Ismail Elnaggar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240036525
    Abstract: A spatially unrolled time domain (TD) architecture that includes an input and weight register having i inputs and j weights, where i corresponds with a number of delay lines for i neurons, and j corresponds with a number of processing elements (PEs) for each delay line of the i delay lines. An enable control register sends a global input pulse to i neurons, and each delay line of the i delay lines includes the corresponding j PEs for that delay line. Each PE includes a digital-to-time converter (DTC) that accepts a digital input and weight and generates a relative delay, each time delay within a given delay line contributing to an overall delay for the given delay line. i time-to-digital converters (TDCs). A readout register receives digital outputs from each of the i TDCs, and serially outputs a signal from each of the i delay lines based on the overall time delay for each of the i delay lines.
    Type: Application
    Filed: July 28, 2023
    Publication date: February 1, 2024
    Inventors: Hamza Al-Maharmeh, Mohammad Alhawari, Nabil Sarhan, Mohammed Ismail Elnaggar
  • Patent number: 11404917
    Abstract: A system, method, and device that provides power to an electrical unit such as an Internet of Things (IoT) device that includes a transmitter that provides electrical power through electromagnetic waves, a receiver, an array that includes a plurality of metamaterial elements, such that the electrical power passes wirelessly from the transmitter to the array, and a controller that applies selective phase shifts to each of the plurality of metamaterial elements such that the electrical power is transmitted from the transmitter, reflected off the array, and is received in phase at the receiver that converts the electromagnetic waves to an electric current to power the device.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: August 2, 2022
    Assignee: Wayne State University
    Inventors: Dimitrios Sounas, Zahra Katbay, Mohammed Ismail Elnaggar
  • Publication number: 20220037930
    Abstract: A system, method, and device that provides power to an electrical unit such as an Internet of Things (IoT) device that includes a transmitter that provides electrical power through electromagnetic waves, a receiver, an array that includes a plurality of metamaterial elements, such that the electrical power passes wirelessly from the transmitter to the array, and a controller that applies selective phase shifts to each of the plurality of metamaterial elements such that the electrical power is transmitted from the transmitter, reflected off the array, and is received in phase at the receiver that converts the electromagnetic waves to an electric current to power the device.
    Type: Application
    Filed: July 27, 2021
    Publication date: February 3, 2022
    Inventors: Dimitrios Sounas, Zahra Katbay, Mohammed Ismail Elnaggar
  • Patent number: 11051747
    Abstract: An electrocardiogram (ECG) processor is disclosed. The ECG processor includes ECG sampling circuitry configured in a first mode to acquire a continuous ECG sample set from an ECG signal by digitally sampling the ECG signal at a Nyquist rate for a first predetermined number of heartbeats and in a second mode to acquire a non-continuous ECG sample set from the ECG signal for a second predetermined number of heartbeats by digitally sampling active regions of the ECG signal that contain a PQRST complex and not from silent regions between adjacent PQRST complexes. The ECG processor also includes processing circuitry configured to determine from the continuous ECG sample set relative locations of the active regions and provide the relative locations of the active regions to the ECG sampling circuitry for sampling the ECG signal in the second mode.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: July 6, 2021
    Assignee: Khalifa University of Science and Technology
    Inventors: Hamza Yacoub Al Maharmeh, Hani Hasan Mustafa Saleh, Baker Mohammad, Mohammed Ismail Elnaggar, Mahmoud Al-Qutayri
  • Patent number: 10819149
    Abstract: Disclosed is an energy mixer having a first active diode coupled between a first input node and an output node, and a second active diode coupled between a second input node and the output node. A first capacitor is coupled between the first input node and a dynamic node, and a second capacitor is coupled between the second input node and a third node. Switching circuitry is configured to selectively couple the dynamic node between a fixed voltage node and the second input node in response to a control signal provided by control circuitry. When an output voltage at the output node is within a first range, the dynamic node is coupled to the fixed voltage node and when the output voltage is within a lower voltage second range, the dynamic node is coupled to the second input node such that first capacitor and second capacitor are coupled in series.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: October 27, 2020
    Assignee: Khalifa University of Science and Technology
    Inventors: Mohammad Radwan Alhawari, Baker Mohammad, Hani Hasan Mustafa Saleh, Mohammed Ismail Elnaggar
  • Patent number: 10666136
    Abstract: A two dimensional charge pump and control circuitry is disclosed. The two dimensional charge pump includes a group of parallel-coupled charge pumps coupled between a DC power source and a first output connection node via a corresponding group of charge pump connection nodes. The group of parallel-coupled charge pumps has a corresponding group of clock connection nodes. Each of the group of parallel-coupled charge pumps includes a corresponding group of series capacitive elements coupled between a corresponding one of the group of charge pump connection nodes and a corresponding one of the group of clock connection nodes.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: May 26, 2020
    Assignee: Khalifa University of Science and Technology
    Inventors: Abdulqader Nael Mahmoud, Mohammad Radwan Alhawari, Baker Mohammad, Hani Hasan Mustafa Saleh, Mohammed Ismail Elnaggar
  • Patent number: 10651730
    Abstract: A switched capacitor DC-DC converter, which includes a pulse frequency modulation circuit, a multiplexing pulse-width modulation circuit, and a switched capacitive element, is disclosed. The switched capacitive element is coupled between the pulse frequency modulation circuit and the multiplexing pulse-width modulation circuit. The pulse frequency modulation circuit uses a DC source signal to charge the switched capacitive element. The pulse frequency modulation circuit provides a group of output signals by multiplexing the switched capacitive element and reduces reverse current to the switched capacitive element when updating each of the group of output signals.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: May 12, 2020
    Assignee: Khalifa University of Science and Technology
    Inventors: Dima Kilani, Baker Mohammad, Mohammad Radwan Alhawari, Hani Hasan Mustafa Saleh, Mohammed Ismail Elnaggar
  • Patent number: 10548499
    Abstract: A medical device and method for detecting a ventricular arrhythmia event is disclosed. The medical device includes input circuitry configured to receive an electrocardiogram (ECG) signal and processing circuitry coupled to the input circuitry that is configured to identify fiducial points within the ECG signal. Feature extraction circuitry coupled to the processing circuitry is configured to determine interval variability between the fiducial points. Machine learning circuitry is coupled to the feature extraction circuitry and is configured to detect ventricular arrhythmia based on the interval variability between the fiducial points.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: February 4, 2020
    Assignee: Khalifa University of Science and Technology
    Inventors: Nourhan Yahya Bayasi, Temesghen Tekeste Habte, Hani Hasan Mustafa Saleh, Ahsan Habib Khandoker, Mohammed Ismail Elnaggar
  • Patent number: 10456027
    Abstract: Architecture and a method for maximally stable extremal regions (MSERs)-based detection of exudates in an ocular fundus is disclosed. The architecture includes a communication interface to receive pixels of an ocular fundus image. The architecture further includes processing circuitry that is coupled to the communication interface. The processing circuitry is configured to automatically provide labels for light image regions and dark image regions within the ocular fundus image for a given intensity threshold and find MSERs within the ocular fundus image based on the labels. The architecture also determines MSER regions based on the MSER criteria and then highlights the pixels of the ocular fundus image that are located within MSER regions to indicate the exudates in the ocular fundus. The architecture is further configured to determine MSER ellipses parameters based on MSER regions and MSER criteria and then highlight the locations of the exudates in the ocular fundus.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: October 29, 2019
    Assignee: Khalifa University of Science and Technology
    Inventors: Ehab Najeh Salahat, Hani Hasan Mustafa Saleh, Andrzej Stefan Sluzek, Mahmoud Al-Qutayri, Baker Mohammad, Mohammed Ismail Elnaggar
  • Publication number: 20190090773
    Abstract: An electrocardiogram (ECG) processor is disclosed. The ECG processor includes ECG sampling circuitry configured in a first mode to acquire a continuous ECG sample set from an ECG signal by digitally sampling the ECG signal at a Nyquist rate for a first predetermined number of heartbeats and in a second mode to acquire a non-continuous ECG sample set from the ECG signal for a second predetermined number of heartbeats by digitally sampling active regions of the ECG signal that contain a PQRST complex and not from silent regions between adjacent PQRST complexes. The ECG processor also includes processing circuitry configured to determine from the continuous ECG sample set relative locations of the active regions and provide the relative locations of the active regions to the ECG sampling circuitry for sampling the ECG signal in the second mode.
    Type: Application
    Filed: September 27, 2017
    Publication date: March 28, 2019
    Inventors: Hamza Yacoub Al Maharmeh, Hani Hasan Mustafa Saleh, Baker Mohammad, Mohammed Ismail Elnaggar, Mahmoud Al-Qutayri
  • Publication number: 20190081558
    Abstract: A switched capacitor DC-DC converter, which includes a pulse frequency modulation circuit, a multiplexing pulse-width modulation circuit, and a switched capacitive element, is disclosed. The switched capacitive element is coupled between the pulse frequency modulation circuit and the multiplexing pulse-width modulation circuit. The pulse frequency modulation circuit uses a DC source signal to charge the switched capacitive element. The pulse frequency modulation circuit provides a group of output signals by multiplexing the switched capacitive element and reduces reverse current to the switched capacitive element when updating each of the group of output signals.
    Type: Application
    Filed: July 19, 2018
    Publication date: March 14, 2019
    Inventors: Dima Kilani, Baker Mohammed, Mohammad Radwan Alhawari, Hani Hasan Mustafa Saleh, Mohammed Ismail Elnaggar
  • Publication number: 20190081560
    Abstract: A two dimensional charge pump and control circuitry is disclosed. The two dimensional charge pump includes a group of parallel-coupled charge pumps coupled between a DC power source and a first output connection node via a corresponding group of charge pump connection nodes. The group of parallel-coupled charge pumps has a corresponding group of clock connection nodes. Each of the group of parallel-coupled charge pumps includes a corresponding group of series capacitive elements coupled between a corresponding one of the group of charge pump connection nodes and a corresponding one of the group of clock connection nodes.
    Type: Application
    Filed: August 14, 2018
    Publication date: March 14, 2019
    Inventors: Abdulqader Nael Mahmoud, Mohammad Radwan Alhawari, Baker Mohammad, Hani Hasan Mustafa Saleh, Mohammed Ismail Elnaggar
  • Patent number: 10194821
    Abstract: A medical device having automated electrocardiogram (ECG) feature extraction is disclosed. The medical device includes input circuitry configured to receive an ECG signal. Processing circuitry coupled to the input circuitry is configured to identify at least one fiducial point of heartbeat signature of the ECG signal. The processing circuitry is further configured to perform substantially simultaneously both a discrete wavelet transform (DWT) and a curve length transform (CLT) to identify the at least one fiducial point.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: February 5, 2019
    Assignee: Khalifa University of Science and Technology
    Inventors: Temesghen Tekeste Habte, Nourhan Yahya Bayasi, Hani Hasan Mustafa Saleh, Ahsan Habib Khandoker, Baker Mohammad, Mahmoud Al-Qutayri, Mohammed Ismail Elnaggar
  • Publication number: 20180310817
    Abstract: Architecture and a method for maximally stable extremal regions (MSERs)-based detection of exudates in an ocular fundus is disclosed. The architecture includes a communication interface to receive pixels of an ocular fundus image. The architecture further includes processing circuitry that is coupled to the communication interface. The processing circuitry is configured to automatically provide labels for light image regions and dark image regions within the ocular fundus image for a given intensity threshold and find MSERs within the ocular fundus image based on the labels. The architecture also determines MSER regions based on the MSER criteria and then highlights the pixels of the ocular fundus image that are located within MSER regions to indicate the exudates in the ocular fundus. The architecture is further configured to determine MSER ellipses parameters based on MSER regions and MSER criteria and then highlight the locations of the exudates in the ocular fundus.
    Type: Application
    Filed: April 26, 2017
    Publication date: November 1, 2018
    Inventors: Ehab Najeh Salahat, Hani Hasan Mustafa Saleh, Andrzej Stefan Sluzek, Mahmoud Al-Qutayri, Baker Mohammad, Mohammed Ismail Elnaggar
  • Publication number: 20180233924
    Abstract: Disclosed is an energy mixer having a first active diode coupled between a first input node and an output node, and a second active diode coupled between a second input node and the output node. A first capacitor is coupled between the first input node and a dynamic node, and a second capacitor is coupled between the second input node and a third node. Switching circuitry is configured to selectively couple the dynamic node between a fixed voltage node and the second input node in response to a control signal provided by control circuitry. When an output voltage at the output node is within a first range, the dynamic node is coupled to the fixed voltage node and when the output voltage is within a lower voltage second range, the dynamic node is coupled to the second input node such that first capacitor and second capacitor are coupled in series.
    Type: Application
    Filed: April 11, 2018
    Publication date: August 16, 2018
    Inventors: Mohammad Radwan Alhawari, Baker Mohammad, Hani Hasan Mustafa Saleh, Mohammed Ismail Elnaggar
  • Patent number: 9972761
    Abstract: A thermoelectric energy harvesting system for charging an energy store from ambient thermal energy includes a thermoelectric energy generator (TEG), an automatic polarity monitor, and switching matrix. The polarity monitor detects when the polarity of an input voltage in the system is reversed relative to a standard voltage polarity, and causes the switching matrix to switch the inputs from the thermoelectric energy harvester.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: May 15, 2018
    Assignee: KHALIFA UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Mohammad Radwan Alhawari, Baker Mohammad, Hani Hasan Mustafa Saleh, Mohammed Ismail Elnaggar
  • Patent number: 9973007
    Abstract: Disclosed is an energy mixer having a first active diode coupled between a first input node and an output node, and a second active diode coupled between a second input node and the output node. A first capacitor is coupled between the first input node and a dynamic node, and a second capacitor is coupled between the second input node and a third node. Switching circuitry is configured to selectively couple the dynamic node between a fixed voltage node and the second input node in response to a control signal provided by control circuitry. When an output voltage at the output node is within a first range, the dynamic node is coupled to the fixed voltage node and when the output voltage is within a lower voltage second range, the dynamic node is coupled to the second input node such that first capacitor and second capacitor are coupled in series.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: May 15, 2018
    Assignee: Khalifa University of Science and Technology
    Inventors: Mohammad Radwan Alhawari, Baker Mohammad, Hani Hasan Mustafa Saleh, Mohammed Ismail Elnaggar
  • Publication number: 20170366012
    Abstract: Disclosed is an energy mixer having a first active diode coupled between a first input node and an output node, and a second active diode coupled between a second input node and the output node. A first capacitor is coupled between the first input node and a dynamic node, and a second capacitor is coupled between the second input node and a third node. Switching circuitry is configured to selectively couple the dynamic node between a fixed voltage node and the second input node in response to a control signal provided by control circuitry. When an output voltage at the output node is within a first range, the dynamic node is coupled to the fixed voltage node and when the output voltage is within a lower voltage second range, the dynamic node is coupled to the second input node such that first capacitor and second capacitor are coupled in series.
    Type: Application
    Filed: June 16, 2016
    Publication date: December 21, 2017
    Inventors: Mohammad Radwan Alhawari, Baker Mohammad, Hani Hasan Mustafa Saleh, Mohammed Ismail Elnaggar
  • Publication number: 20170265768
    Abstract: A medical device and method for detecting a ventricular arrhythmia event is disclosed. The medical device includes input circuitry configured to receive an electrocardiogram (ECG) signal and processing circuitry coupled to the input circuitry that is configured to identify fiducial points within the ECG signal. Feature extraction circuitry coupled to the processing circuitry is configured to determine interval variability between the fiducial points. Machine learning circuitry is coupled to the feature extraction circuitry and is configured to detect ventricular arrhythmia based on the interval variability between the fiducial points.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Inventors: Nourhan Yahya Bayasi, Temesghen Tekeste Habte, Hani Hasan Mustafa Saleh, Ahsan Habib Khandoker, Mohammed Ismail Elnaggar
  • Patent number: 9740947
    Abstract: An architecture for linear-time extraction of maximally stable extremal regions (MSERs) having an image memory, heap memory, a pointer array and processing hardware is disclosed. The processing hardware is configured to in real-time analyze image pixels in the image memory using a linear-time algorithm to identify a plurality of components of the image. The processing hardware is also configured to place the image pixels in the heap memory for each of the plurality of components of the image, generate a pointer that points to a location in the heap memory that is associated with a start of flooding for another component and store the pointer in the array of pointers. The processing hardware is also configured to access the plurality of components using the array of pointers and determine MSER ellipses based on the components and MSER criteria.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: August 22, 2017
    Assignee: Khalifa University of Science and Technology
    Inventors: Sohailah Mohamed Rashed Alyammahi, Ehab Najeh Salahat, Hani Hasan Mustafa Saleh, Andrzej Stefan Sluzek, Mohammed Ismail Elnaggar