Patents by Inventor Mohammed Mounir Shalaby

Mohammed Mounir Shalaby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11938539
    Abstract: A build unit for additively manufacturing three-dimensional objects may include an energy beam system having one or more irradiation devices respectively configured to direct one or more energy beams onto a region of a powder bed, and an inertization system including an irradiation chamber defining an irradiation plenum, one or more supply manifolds, and a return manifold. The one or more supply manifolds may include a downflow manifold configured to provide a downward flow of a process gas through at least a portion of the irradiation plenum defined by the irradiation chamber, and/or a crossflow manifold configured to provide a lateral flow of the process gas through at least a portion of the irradiation plenum defined by the irradiation chamber. The return manifold may evacuate or otherwise remove process gas from the irradiation plenum defined by the irradiation chamber.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: March 26, 2024
    Assignees: General Electric Company, Concept Laser GmbH
    Inventors: Eric Edward Halla, Ramakrishna Venkata Mallina, Kishore Ramakrishnan, Shashwat Swami Jaiswal, Mohammed Mounir Shalaby, Peter Pontiller-Schymura
  • Patent number: 11759861
    Abstract: A build unit for additively manufacturing three-dimensional objects may include an energy beam system having one or more irradiation devices respectively configured to direct one or more energy beams onto a region of a powder bed, and an inertization system including an irradiation chamber defining an irradiation plenum, one or more supply manifolds, and a return manifold. The one or more supply manifolds may include a downflow manifold configured to provide a downward flow of a process gas through at least a portion of the irradiation plenum defined by the irradiation chamber, and/or a crossflow manifold configured to provide a lateral flow of the process gas through at least a portion of the irradiation plenum defined by the irradiation chamber. The return manifold may evacuate or otherwise remove process gas from the irradiation plenum defined by the irradiation chamber.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: September 19, 2023
    Assignees: General Electric Company, Concept Laser GmbH
    Inventors: Eric Edward Halla, Ramakrishna Venkata Mallina, Kishore Ramakrishnan, Shashwat Swami Jaiswal, Mohammed Mounir Shalaby, Adam Garret Susong, Peter Pontiller-Schymura
  • Patent number: 11685120
    Abstract: An additive manufacturing (AM) system includes a housing defining a chamber, a build platform disposed in the chamber at a first elevation, and a lower gas inlet disposed at a second elevation and configured to supply a lower gas flow. The AM system includes a contoured surface extending between the lower gas inlet and the build platform to direct the lower gas flow from the second elevation at the lower gas inlet to the first elevation at the build platform, where the contoured surface discharges the lower gas flow in a direction substantially parallel to the build platform. The AM system also includes one or more gas delivery devices coupled to the lower gas inlet to regulate one or more flow characteristics of the lower gas flow, and a gas outlet configured to discharge the lower gas flow.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: June 27, 2023
    Assignee: General Electric Company
    Inventors: Christian Thomas Wakelam, Rene du Cauze de Nazelle, Mohammed Mounir Shalaby, Kishore Ramakrishnan, Jens Stammberger
  • Publication number: 20220331875
    Abstract: A build unit for additively manufacturing three-dimensional objects may include an energy beam system having one or more irradiation devices respectively configured to direct one or more energy beams onto a region of a powder bed, and an inertization system including an irradiation chamber defining an irradiation plenum, one or more supply manifolds, and a return manifold. The one or more supply manifolds may include a downflow manifold configured to provide a downward flow of a process gas through at least a portion of the irradiation plenum defined by the irradiation chamber, and/or a crossflow manifold configured to provide a lateral flow of the process gas through at least a portion of the irradiation plenum defined by the irradiation chamber. The return manifold may evacuate or otherwise remove process gas from the irradiation plenum defined by the irradiation chamber.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Inventors: Eric Edward Halla, Ramakrishna Venkata Mallina, Kishore Ramakrishnan, Shashwat Swami Jaiswal, Mohammed Mounir Shalaby, Peter Pontiller-Schymura
  • Publication number: 20220332049
    Abstract: A build unit for additively manufacturing three-dimensional objects may include an energy beam system having one or more irradiation devices respectively configured to direct one or more energy beams onto a region of a powder bed, and an inertization system including an irradiation chamber defining an irradiation plenum, one or more supply manifolds, and a return manifold. The one or more supply manifolds may include a downflow manifold configured to provide a downward flow of a process gas through at least a portion of the irradiation plenum defined by the irradiation chamber, and/or a crossflow manifold configured to provide a lateral flow of the process gas through at least a portion of the irradiation plenum defined by the irradiation chamber. The return manifold may evacuate or otherwise remove process gas from the irradiation plenum defined by the irradiation chamber.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Inventors: Eric Edward Halla, Ramakrishna Venkata Mallina, Kishore Ramakrishnan, Shashwat Swami Jaiswal, Mohammed Mounir Shalaby, Peter Pontiller-Schymura
  • Publication number: 20220331869
    Abstract: A build unit for additively manufacturing three-dimensional objects may include an energy beam system having one or more irradiation devices respectively configured to direct one or more energy beams onto a region of a powder bed, and an inertization system including an irradiation chamber defining an irradiation plenum, one or more supply manifolds, and a return manifold. The one or more supply manifolds may include a downflow manifold configured to provide a downward flow of a process gas through at least a portion of the irradiation plenum defined by the irradiation chamber, and/or a crossflow manifold configured to provide a lateral flow of the process gas through at least a portion of the irradiation plenum defined by the irradiation chamber. The return manifold may evacuate or otherwise remove process gas from the irradiation plenum defined by the irradiation chamber.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Inventors: Eric Edward Halla, Ramakrishna Venkata Mallina, Kishore Ramakrishnan, Shashwat Swami Jaiswal, Mohammed Mounir Shalaby, Adam Garret Susong, Peter Pontiller-Schymura
  • Publication number: 20220281011
    Abstract: A recoater for an additive manufacturing apparatus includes a recoater arm and retainer operably coupled with the recoater arm. The retainer includes a housing defining a cavity. A blade carrier supports one or more blades. An actuator is operably coupled with the housing and is configured to compressively retain an upper portion of the blade carrier within the cavity between a slide of the actuator and the housing.
    Type: Application
    Filed: March 2, 2021
    Publication date: September 8, 2022
    Inventors: Ryan William Van Deest, David Scott Simmermon, Nicholas Ryan Dodds, Mohammed Mounir Shalaby
  • Publication number: 20220072574
    Abstract: An additive manufacturing (AM) system includes a housing defining a chamber, a build platform disposed in the chamber at a first elevation, and a lower gas inlet disposed at a second elevation and configured to supply a lower gas flow. The AM system includes a contoured surface extending between the lower gas inlet and the build platform to direct the lower gas flow from the second elevation at the lower gas inlet to the first elevation at the build platform, where the contoured surface discharges the lower gas flow in a direction substantially parallel to the build platform. The AM system also includes one or more gas delivery devices coupled to the lower gas inlet to regulate one or more flow characteristics of the lower gas flow, and a gas outlet configured to discharge the lower gas flow.
    Type: Application
    Filed: November 17, 2021
    Publication date: March 10, 2022
    Inventors: Christian Thomas Wakelam, Rene du Cauze de Nazelle, Mohammed Mounir Shalaby, Kishore Ramakrishnan, Jens Stammberger
  • Patent number: 11203027
    Abstract: An additive manufacturing (AM) system includes a housing defining a chamber, a build platform disposed in the chamber at a first elevation, and a lower gas inlet disposed at a second elevation and configured to supply a lower gas flow. The AM system includes a contoured surface extending between the lower gas inlet and the build platform to direct the lower gas flow from the second elevation at the lower gas inlet to the first elevation at the build platform, where the contoured surface discharges the lower gas flow in a direction substantially parallel to the build platform. The AM system also includes one or more gas delivery devices coupled to the lower gas inlet to regulate one or more flow characteristics of the lower gas flow, and a gas outlet configured to discharge the lower gas flow.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: December 21, 2021
    Assignee: General Electric Company
    Inventors: Christian Thomas Wakelam, Rene du Cauze de Nazelle, Mohammed Mounir Shalaby, Kishore Ramakrishnan, Jens Stammberger
  • Patent number: 11126916
    Abstract: According to one embodiment, there is provided herein a system and method for producing a well lifecycle lift plan that includes considerations of multiple types of lift, multiple lift configurations associated with each lift type, and can be used to provide a prediction of when or if it would be desirable to change the lift plan at some time in the future. Another embodiment utilizes a heuristic database with rules that might be used to limit the solution space in some instances by restricting the solution to feasible configurations. A further embodiment teaches how multiple individual well optimization results might be combined with a reservoir model to obtain an optimized lift schedule for an entire field.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: September 21, 2021
    Assignee: Baker Hughes ESP, Inc.
    Inventors: Adam Rasheed, Mohammed Mounir Shalaby, Shyam Sivaramakrishnan, Steven Jay Tyber
  • Patent number: 11020763
    Abstract: The present disclosure relates to the manufacture and use of an additive manufacturing (AM) system that employs a spacer flow guide disposed or formed within a housing that defines a chamber of the AM system. The spacer flow guide may direct various portions of a gas flow within the chamber to respective exhaust channels. For example, in combination with portions of the housing, the spacer flow guide may define a main exhaust channel that extends between the chamber and a gas outlet formed in a downstream end of the housing. Additionally, a bypass exhaust channel may be defined between the chamber and a back surface of the spacer flow guide to fluidly couple an upper portion of the chamber to the main exhaust channel.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: June 1, 2021
    Assignee: General Electric Company
    Inventor: Mohammed Mounir Shalaby
  • Publication number: 20200061656
    Abstract: The present disclosure relates to the manufacture and use of an additive manufacturing (AM) system that employs a spacer flow guide disposed or formed within a housing that defines a chamber of the AM system. The spacer flow guide may direct various portions of a gas flow within the chamber to respective exhaust channels. For example, in combination with portions of the housing, the spacer flow guide may define a main exhaust channel that extends between the chamber and a gas outlet formed in a downstream end of the housing. Additionally, a bypass exhaust channel may be defined between the chamber and a back surface of the spacer flow guide to fluidly couple an upper portion of the chamber to the main exhaust channel.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 27, 2020
    Inventor: Mohammed Mounir Shalaby
  • Publication number: 20200061653
    Abstract: An additive manufacturing (AM) system includes a housing defining a chamber, a build platform disposed in the chamber at a first elevation, and a lower gas inlet disposed at a second elevation and configured to supply a lower gas flow. The AM system includes a contoured surface extending between the lower gas inlet and the build platform to direct the lower gas flow from the second elevation at the lower gas inlet to the first elevation at the build platform, where the contoured surface discharges the lower gas flow in a direction substantially parallel to the build platform. The AM system also includes one or more gas delivery devices coupled to the lower gas inlet to regulate one or more flow characteristics of the lower gas flow, and a gas outlet configured to discharge the lower gas flow.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 27, 2020
    Inventors: Christian Thomas Wakelam, Rene du Cauze de Nazelle, Mohammed Mounir Shalaby, Kishore Ramakrishnan, Jens Stammberger
  • Patent number: 10471510
    Abstract: A computerized method, system, program product and additive manufacturing (AM) system are disclosed. Embodiments provide for modifying object code representative of an object to be physically generated layer by layer by a computerized AM system using the object code. The computerized method may include providing an interface to allow a user to manually: select a region within the object in the object code, the object code including a plurality of pre-assigned build strategy parameters for the object that control operation of the computerized AM system, and selectively modify a build strategy parameter in the selected region in the object code to change an operation of the computerized AM system from the plurality of pre-assigned build strategy parameters during building of the object by the computerized AM system.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: November 12, 2019
    Assignee: General Electric Company
    Inventors: Donnell Eugene Crear, Michael Evans Graham, Tao Jia, Mohammed Mounir Shalaby
  • Patent number: 10406633
    Abstract: A computerized method, system, program product and additive manufacturing (AM) system are disclosed. Embodiments provide for modifying object code representative of an object to be physically generated layer by layer by a computerized AM system using the object code. The computerized method may include providing an interface to allow a user to manually: select a region within the object in the object code, the object code including a plurality of pre-assigned build strategy parameters for the object that control operation of the computerized AM system, and selectively modify a build strategy parameter in the selected region in the object code to change an operation of the computerized AM system from the plurality of pre-assigned build strategy parameters during building of the object by the computerized AM system.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: September 10, 2019
    Assignee: General Electric Company
    Inventors: Donnell Eugene Crear, Michael Evans Graham, Tao Jia, Mohammed Mounir Shalaby
  • Patent number: 10338569
    Abstract: A computerized method, system, program product and additive manufacturing (AM) system are disclosed. Embodiments provide for modifying object code representative of an object to be physically generated layer by layer by a computerized AM system using the object code. The computerized method may include providing an interface to allow a user to manually: select a region within the object in the object code, the object code including a plurality of pre-assigned build strategy parameters for the object that control operation of the computerized AM system, and selectively modify a build strategy parameter in the selected region in the object code to change an operation of the computerized AM system from the plurality of pre-assigned build strategy parameters during building of the object by the computerized AM system.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: July 2, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Donnell Eugene Crear, Michael Evans Graham, Tao Jia, Mohammed Mounir Shalaby
  • Publication number: 20190054530
    Abstract: A computerized method, system, program product and additive manufacturing (AM) system are disclosed. Embodiments provide for modifying object code representative of an object to be physically generated layer by layer by a computerized AM system using the object code. The computerized method may include providing an interface to allow a user to manually: select a region within the object in the object code, the object code including a plurality of pre-assigned build strategy parameters for the object that control operation of the computerized AM system, and selectively modify a build strategy parameter in the selected region in the object code to change an operation of the computerized AM system from the plurality of pre-assigned build strategy parameters during building of the object by the computerized AM system.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 21, 2019
    Inventors: Donnell Eugene Crear, Michael Evans Graham, Tao Jia, Mohammed Mounir Shalaby
  • Publication number: 20190056714
    Abstract: A computerized method, system, program product and additive manufacturing (AM) system are disclosed. Embodiments provide for modifying object code representative of an object to be physically generated layer by layer by a computerized AM system using the object code. The computerized method may include providing an interface to allow a user to manually: select a region within the object in the object code, the object code including a plurality of pre-assigned build strategy parameters for the object that control operation of the computerized AM system, and selectively modify a build strategy parameter in the selected region in the object code to change an operation of the computerized AM system from the plurality of pre-assigned build strategy parameters during building of the object by the computerized AM system.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 21, 2019
    Inventors: Donnell Eugene Crear, Michael Evans Graham, Tao Jia, Mohammed Mounir Shalaby
  • Publication number: 20190054566
    Abstract: A computerized method, system, program product and additive manufacturing (AM) system are disclosed. Embodiments provide for modifying object code representative of an object to be physically generated layer by layer by a computerized AM system using the object code. The computerized method may include providing an interface to allow a user to manually: select a region within the object in the object code, the object code including a plurality of pre-assigned build strategy parameters for the object that control operation of the computerized AM system, and selectively modify a build strategy parameter in the selected region in the object code to change an operation of the computerized AM system from the plurality of pre-assigned build strategy parameters during building of the object by the computerized AM system.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 21, 2019
    Inventors: Donnell Eugene Crear, Michael Evans Graham, Tao Jia, Mohammed Mounir Shalaby
  • Publication number: 20170351959
    Abstract: According to one embodiment, there is provided herein a system and method for producing a well lifecycle lift plan that includes considerations of multiple types of lift, multiple lift configurations associated with each lift type, and can be used to provide a prediction of when or if it would be desirable to change the lift plan at some time in the future. Another embodiment utilizes a heuristic database with rules that might be used to limit the solution space in some instances by restricting the solution to feasible configurations. A further embodiment teaches how multiple individual well optimization results might be combined with a reservoir model to obtain an optimized lift schedule for an entire field.
    Type: Application
    Filed: June 2, 2017
    Publication date: December 7, 2017
    Inventors: Adam Rasheed, Mohammed Mounir Shalaby, Shyam Sivaramakrishnan, Steven Jay Tyber