Patents by Inventor Mohan Manoharan

Mohan Manoharan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100108241
    Abstract: A membrane structure is provided. The membrane structure includes a first layer having a plurality of pores; and a second layer disposed on the first layer. The second layer has a plurality of unconnected pores. At least a portion of the plurality of unconnected pores of the second layer is at least partially filled with a filler such that the first layer is substantially free of the filler. At least a portion of the plurality of unconnected pores of the second layer is in fluid communication with at least one of the pores of the first layer. A method of making a membrane structure is provided. The method includes the steps of providing a first layer having a plurality of interconnected pores; disposing a second layer on the first layer, and filling at least a portion of the unconnected pores of the second layer with a filler such that the first layer is substantially free of the filler.
    Type: Application
    Filed: January 15, 2010
    Publication date: May 6, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Vidya Ramaswamy, Seth Thomas Taylor, James Anthony Ruud, Melissa Suzanne Sander, Anthony Yu-Chung Ku, Mohan Manoharan
  • Patent number: 7709574
    Abstract: The present invention is generally directed to methods of making ceramics with nanoscale/microscale structure involving self-assembly of precursor materials such as, but not limited to, inorganic-based block co-polymers, inorganic-/organic-based hybrid block co-polymers, and other similar materials, and to the structures made by such methods. Where such precursor materials are themselves novel, the present invention is also generally directed to those materials and their synthesis.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: May 4, 2010
    Assignee: General Electric Company
    Inventors: Julin Wan, Patrick Roland Lucien Malenfant, Mohan Manoharan
  • Patent number: 7711022
    Abstract: A polycrystalline transparent ceramic article including lutetium is presented. The article includes an oxide with a formula of ABO3, having type A lattice sites and type B lattice sites. The lattice site A may further comprise a plurality of elements, in addition to lutetium. Type B lattice site includes aluminum. An imaging device, a laser assembly, and a scintillator including the lutetium-based article is provided. A method of making the above article is also provided.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: May 4, 2010
    Assignee: General Electric Company
    Inventors: Kalaga Murali Krishna, Venkat Subramaniam Venkataramani, Mohan Manoharan
  • Publication number: 20100096066
    Abstract: A membrane structure is provided. A membrane structure has a top surface and a bottom surface. The membrane structure includes a plurality of sintered layers including an inner layer disposed between two outer layers. The membrane structure further includes a nonmonotonic gradient in pore size extending between the top surface and the bottom surface. A method of making a membrane structure is provided. The method includes the steps of providing at least one inner layer; providing a plurality of outer layers; and laminating the inner layer and the outer layers to obtain a membrane structure.
    Type: Application
    Filed: December 21, 2009
    Publication date: April 22, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Vidya Ramaswamy, Milivoj Konstantin Brun, Sergio Paulo Martins Loureiro, Anthony Yu-Chung Ku, Mohan Manoharan
  • Patent number: 7669719
    Abstract: A membrane structure is provided. The membrane structure includes a first layer having a plurality of pores; and a second layer disposed on, the first layer. The second layer has a plurality of unconnected pores. At least a portion of the plurality of unconnected pores of the second layer is at least partially filled with a filler such that the first layer is substantially free of the filler. At least a portion of the plurality of unconnected pores of the second layer is in fluid communication with at least one of the pores of the first layer. A method of making a membrane structure is provided. The method includes the steps of providing a first layer having a plurality of interconnected pores; disposing a second layer on the first layer, and filling at least a portion of the unconnected pores of the second layer with a filler such that the first layer is substantially free of the filler.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: March 2, 2010
    Assignee: General Electric Company
    Inventors: Vidya Ramaswamy, Seth Thomas Taylor, James Anthony Ruud, Melissa Suzanne Sander, Anthony Yu-Chung Ku, Mohan Manoharan
  • Patent number: 7670679
    Abstract: A core-shell ceramic particulate is provided. The core-shell ceramic particulate comprises a core particulate structure comprising a plurality of primary particulates and a plurality of primary pores; and a shell at least partially enclosing the core particulate structure. Each of the primary particulates comprises a plurality of secondary particulates and a plurality of secondary pores; and the shell comprises a plurality of tertiary particulates and a plurality of tertiary pores. A method of making a core-shell ceramic particulate is provided. The method comprises the steps of providing a core particulate structure comprising a plurality of primary particulates and a plurality of primary pores wherein each primary particulate comprises a plurality of secondary particulates and a plurality of secondary pores; and disposing a shell comprising a plurality of tertiary particulates and a plurality of tertiary pores onto the core particulate structure.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: March 2, 2010
    Assignee: General Electric Company
    Inventors: Kalaga Murali Krishna, James Anthony Ruud, Geetha Karavoor, Balachandar Ramadurai, Mohan Manoharan
  • Publication number: 20100029465
    Abstract: Ceramic materials with relatively high resistance to wetting by various liquids, such as water, are presented, along with articles made with these materials, methods for making these articles and materials, and methods for protecting articles using coatings made from these materials. One embodiment is an article comprising a material that is transparent to electromagnetic radiation of at least one type selected from the group consisting of ultraviolet radiation, visible light, and infrared radiation. The material comprises a primary oxide and a secondary oxide. The primary oxide comprises cerium and hafnium. The secondary oxide comprises a secondary oxide cation selected from the group consisting of the rare earth elements, yttrium, and scandium. Another embodiment is an article comprising a material that is transparent to electromagnetic radiation of at least one type selected from the group consisting of ultraviolet radiation, visible light, and infrared radiation.
    Type: Application
    Filed: September 18, 2009
    Publication date: February 4, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Molly Maureen Gentleman, James Anthony Ruud, Mohan Manoharan
  • Publication number: 20100027105
    Abstract: Articles transparent to infrared radiation and resistant to impact and wear are provided. In one embodiment the article comprises a substrate and a composite coating disposed over the substrate and extending from an interface with the substrate to an external surface. The coating and the substrate are capable of transmitting infrared radiation. The composite coating comprises a first phase and a second phase, where the second phase has a higher resistance to erosive wear than the first phase. The coating comprises a compositional gradient proceeding from a first composition at the interface of the coating with the substrate to a second composition at the external surface, the first composition comprising a higher concentration of the first phase than that of the second composition.
    Type: Application
    Filed: June 28, 2007
    Publication date: February 4, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sean Michael Sweeney, Timothy James Yosenick, Dalong Zhong, Milivoj Konstantin Brun, Sergio Paulo Martins Loureiro, Venkat Subramaniam Venkataramani, Mohan Manoharan
  • Publication number: 20100006149
    Abstract: Ceramic materials with relatively high resistance to wetting by various liquids, such as water, are presented, along with articles made with these materials, methods for making these articles and materials, and methods for protecting articles using coatings made from these materials. One particular embodiment is an article that comprises a coating having a surface connected porosity content of up to about 5 percent by volume. The coating comprises a material that comprises a primary oxide and a secondary oxide, wherein (i) the primary oxide comprises a cation selected from the group consisting of cerium, praseodymium, terbium, and hafnium, and (ii) the secondary oxide comprises a cation selected from the group consisting of the rare earth elements, yttrium, and scandium. The material is transparent to electromagnetic radiation of at least one type selected from the group consisting of ultraviolet radiation, visible light, and infrared radiation.
    Type: Application
    Filed: September 18, 2009
    Publication date: January 14, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Molly Maureen Gentleman, James Anthony Ruud, Mohan Manoharan
  • Publication number: 20090280246
    Abstract: In some embodiments, the present invention is directed to methods of making structures with complex functional architectures, where such structures generally comprise at least two mesoporous regions comprising different chemical activity, and where such methods afford spatial control over the placement of such regions of differing chemical activity. In some embodiments, the present invention is also directed to the structures formed by such methods, where such structures are themselves novel.
    Type: Application
    Filed: June 12, 2009
    Publication date: November 12, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Anthony Yu-Chung Ku, Seth Thomas Taylor, Mohan Manoharan, Sergio Paulo Martins Loureiro, James Anthony Ruud
  • Patent number: 7608829
    Abstract: A scintillation detector comprising nano-scale particles of a scintillation compound embedded in a plastic matrix is provided. The nano-scale particles may be made from metal oxides, metal oxyhalides, metal oxysulfides, or metal halides. Methods are provided for preparing the nano-scale particles. The particles may be coated with organic compounds or polymers prior to incorporation in the plastic matrix. A technique for matching the refractive index of the plastic matrix with the nano-scale particles by incorporating nano-scale particles of titanium dioxide is also provided. The scintillator may be coupled with one or more photodetectors to form a scintillation detection system. The scintillation detection system may be adapted for use in X-ray and radiation imaging devices, such as digital X-ray imaging, mammography, CT, PET, or SPECT, or may be used in radiation security detectors or subterranean radiation detectors.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: October 27, 2009
    Assignee: General Electric Company
    Inventors: Sergio Paulo Martins Loureiro, James Scott Vartuli, Brent Allen Clothier, Steven Jude Duclos, Mohan Manoharan, Patrick Roland Lucien Malenfant, Venkat Subramaniam Venkataramani, Clifford Bueno
  • Publication number: 20090155566
    Abstract: Ceramic materials with relatively high resistance to wetting by various liquids, such as water, are presented, along with articles made with these materials, methods for making these articles and materials, and methods for protecting articles using coatings made from these materials. One particular embodiment is an article that comprises a coating having a surface connected porosity content of up to about 5 percent by volume. The coating comprises a material that comprises a primary oxide and a secondary oxide, wherein (i) the primary oxide comprises a cation selected from the group consisting of cerium, praseodymium, terbium, and hafnium, and (ii) the secondary oxide comprises a cation selected from the group consisting of the rare earth elements, yttrium, and scandium.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 18, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Molly Maureen Gentleman, James Anthony Ruud, Mohan Manoharan
  • Publication number: 20090155609
    Abstract: Ceramic materials with relatively high resistance to wetting by various liquids, such as water, are presented, along with articles made with these materials, methods for making these articles and materials, and methods for protecting articles using coatings made from these materials. One embodiment is a material comprising a primary oxide and a secondary oxide. The primary oxide comprises cerium and hafnium. The secondary oxide comprises a secondary oxide cation selected from the group consisting of the rare earth elements, yttrium, and scandium. Another embodiment is a material comprising a primary oxide and a secondary oxide. The primary oxide comprises cerium or hafnium. The secondary oxide comprises (i) praseodymium or ytterbium, and (ii) another cation selected from the group consisting of the rare earth elements, yttrium, and scandium.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 18, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Molly Maureen Gentleman, James Anthony Ruud, Mohan Manoharan
  • Patent number: 7449128
    Abstract: A nanomaterial comprising a plurality of nanoparticles. The plurality of nanoparticles includes at least one dopant and at least one of a metal oxide, a metal phosphate, a metal silicate, a metal hafnate, a metal aluminate, and combinations thereof. The metal is one of an alkali earth metal, a lanthanide, and a transition metal. The plurality of nanoparticles is formed by forming a homogenized precursor solution of at least one metal precursor and at least one dopant precursor, adding a fuel and optionally at least one of a phosphate source, a silicate source, a hafnate source, and an aluminate source to the precursor solution, removing water from the precursor solution to leave a reaction concentrate, and igniting the reaction concentrate to form a powder comprising the nanomaterial. In one embodiment, the nanomaterial is a scintillator material.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: November 11, 2008
    Assignee: General Electric Company
    Inventors: Kalaga Murali Krishna, Sergio Paulo Martins Loureiro, Mohan Manoharan, Geetha Karavoor
  • Publication number: 20080246004
    Abstract: A nanomaterial comprising a plurality of nanoparticles. The plurality of nanoparticles includes at least one dopant and at least one of a metal oxide, a metal phosphate, a metal silicate, a metal hafnate, a metal aluminate, and combinations thereof. The metal is one of an alkali earth metal, a lanthanide, and a transition metal. The plurality of nanoparticles is formed by forming a homogenized precursor solution of at least one metal precursor and at least one dopant precursor, adding a fuel and optionally at least one of a phosphate source, a silicate source, a hafnate source, and an aluminate source to the precursor solution, removing water from the precursor solution to leave a reaction concentrate, and igniting the reaction concentrate to form a powder comprising the nanomaterial. In one embodiment, the nanomaterial is a scintillator material.
    Type: Application
    Filed: June 21, 2004
    Publication date: October 9, 2008
    Inventors: Kalaga Murali Krishna, Sergio Paulo Martins Loureiro, Mohan Manoharan, Geetha Karavoor
  • Publication number: 20080237470
    Abstract: A scintillation detector comprising nano-scale particles of a scintillation compound embedded in a plastic matrix is provided. The nano-scale particles may be made from metal oxides, metal oxyhalides, metal oxysulfides, or metal halides. Methods are provided for preparing the nano-scale particles. The particles may be coated with organic compounds or polymers prior to incorporation in the plastic matrix. A technique for matching the refractive index of the plastic matrix with the nano-scale particles by incorporating nano-scale particles of titanium dioxide is also provided. The scintillator may be coupled with one or more photodetectors to form a scintillation detection system. The scintillation detection system may be adapted for use in X-ray and radiation imaging devices, such as digital X-ray imaging, mammography, CT, PET, or SPECT, or may be used in radiation security detectors or subterranean radiation detectors.
    Type: Application
    Filed: March 26, 2007
    Publication date: October 2, 2008
    Inventors: Sergio Paulo Martins Loureiro, James Scott Vartuli, Brent Allen Clothier, Steven Jude Duclos, Mohan Manoharan, Patrick Roland Lucien Malenfant, Venkat Subramaniam Venkataramani, Clifford Bueno
  • Publication number: 20080134895
    Abstract: An apparatus for separating at least one component from a mixture of a plurality of chemical species is provided. The apparatus comprises a membrane structure comprising a plurality of pores disposed within a matrix material to allow mass transport from a first surface of the membrane structure to a second surface of the membrane structure. The matrix material has a thermal conductivity of at least about 10 W/m/K; and a functional material disposed within at least a portion of the plurality of pores. The functional material has the property of promoting selective transport of at least one species through the membrane structure from the first surface to the second surface.
    Type: Application
    Filed: December 8, 2006
    Publication date: June 12, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: James Anthony Ruud, Michael John Bowman, Kalya Vijaya Sarathy, Mohan Manoharan, Anthony Yu-Chung Ku, Vidya Ramaswamy, Patrick Roland Lucien Malenfant
  • Publication number: 20080064585
    Abstract: Multiphase ceramic nanocomposites having at least three phases are disclosed. Each of the at least three phases has an average grain size less than about 100 nm. In one embodiment, the ceramic nanocomposite is substantially free of glassy grain boundary phases. In another embodiment, the multiphase ceramic nanocomposite is thermally stable up to a temperature of at least about 1500° C. Methods of making such multiphase ceramic nanocomposites are also disclosed.
    Type: Application
    Filed: October 11, 2006
    Publication date: March 13, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Julin Wan, Sergio Paulo Martins Loureiro, Mohan Manoharan, Reza Sarrafi-Nour, Seth Thomas Taylor
  • Patent number: 7338982
    Abstract: A mesoporous material is described. It includes a network of interconnected pores within an L3 phase structure. The pores include pore walls of a silicate material functionalized with at least one metal cation—usually a transition metal. Articles which include the mesoporous material are also disclosed, along with methods for making the mesoporous material.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: March 4, 2008
    Assignee: General Electric Company
    Inventors: Sergio Paulo Martins Loureiro, Mohan Manoharan
  • Publication number: 20080006574
    Abstract: A membrane structure is provided. The membrane structure includes a first layer having a plurality of pores; and a second layer disposed on, the first layer. The second layer has a plurality of unconnected pores. At least a portion of the plurality of unconnected pores of the second layer is at least partially filled with a filler such that the first layer is substantially free of the filler. At least a portion of the plurality of unconnected pores of the second layer is in fluid communication with at least one of the pores of the first layer. A method of making a membrane structure is provided. The method includes the steps of providing a first layer having a plurality of interconnected pores; disposing a second layer on the first layer, and filling at least a portion of the unconnected pores of the second layer with a filler such that the first layer is substantially free of the filler.
    Type: Application
    Filed: July 5, 2006
    Publication date: January 10, 2008
    Inventors: Vidya Ramaswamy, Seth Thomas Taylor, James Anthony Ruud, Melissa Suzanne Sander, Anthony Yu-Chung Ku, Mohan Manoharan