Patents by Inventor Mohan Srinivasan
Mohan Srinivasan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250136684Abstract: The present invention provides isolated monoclonal antibodies that specifically bind LAG-3, and have optimized functional properties compared to previously described anti-LAG-3 antibodies, such as antibody 25F7 (US 2011/0150892 A1). These properties include reduced deamidation sites, while still retaining high affinity binding to human LAG-3, and physical (i.e., thermal and chemical) stability. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided, as well as immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies. The present invention also provides methods for detecting LAG-3, as well as methods for treating stimulating immune responses using an anti-LAG-3 antibody of the invention. Combination therapy, in which the antibodies are co-administered with at least one additional immunostimulatory antibody, is also provided.Type: ApplicationFiled: November 22, 2024Publication date: May 1, 2025Applicant: Bristol-Myers Squibb CompanyInventors: Nils LONBERG, Mohan SRINIVASAN
-
Publication number: 20250122301Abstract: Provided herein are antibodies that specifically bind to CD25. Also provided herein are methods of making the antibodies described, and methods of use thereof. For example, the CD25 antibodies may be used therapeutically to treat cancer or autoimmune diseases, and in certain aspects: disrupt the trimerization of the beta, gamma, and alpha (CD25) chains of the IL-2 receptor, bind to a different epitope than to which Daclizumab or Baciliximab bind, exhibit a higher affinity of binding to CD25 at a pH lower than 7.4, when compared to the affinity of binding to CD25 at a pH of 7.4, and/or exhibit a higher affinity of binding to CD25 at a pH of about 6.5.Type: ApplicationFiled: December 4, 2024Publication date: April 17, 2025Inventors: Bing Li, Matthew P. Greving, Phung Tu Gip, Matt Lundberg, Mohan Srinivasan
-
Patent number: 12215163Abstract: Provided herein are antibodies that specifically bind to CD25. Also provided herein are methods of making the antibodies described, and methods of use thereof. For example, the CD25 antibodies may be used therapeutically to treat cancer or autoimmune diseases, and in certain aspects: disrupt the trimerization of the beta, gamma, and alpha (CD25) chains of the IL-2 receptor, bind to a different epitope than to which Daclizumab or Baciliximab bind, exhibit a higher affinity of binding to CD25 at a pH lower than 7.4, when compared to the affinity of binding to CD25 at a pH of 7.4, and/or exhibit a higher affinity of binding to CD25 at a pH of about 6.5.Type: GrantFiled: May 13, 2021Date of Patent: February 4, 2025Assignee: iBio, Inc.Inventors: Phung Tu Gip, Bing Li, Matthew P. Greving, Matt Lundberg, Mohan Srinivasan
-
Publication number: 20250000991Abstract: The present disclosure provides nectin-4 antibody drug conjugates and pharmaceutical compositions thereof, and methods of using for the treatment of cancer.Type: ApplicationFiled: June 19, 2024Publication date: January 2, 2025Inventors: Jeffrey Streetman BOYLES, Kyla Elizabeth DRISCOLL, Omar DURAMAD, Qianxu GUO, Rikke Baek HOLMGAARD, Kevin Charles LINDQUIST, Joshua Inshik PARK, Divya SAGAR, Mohan SRINIVASAN, Petra VERDINO, Jieyu ZHOU
-
Patent number: 12110337Abstract: This disclosure provides isolated antibodies that bind specifically to CD27 with high affinity. The disclosure provides methods for treating a subject afflicted with a cancer comprising administering to the subject a therapeutically effective amount of an anti-CD27 antibody as monotherapy or in combination with a checkpoint inhibitor, such as an anti-PD-1, anti-PD-L1, or anti-CTLA-4 antibody.Type: GrantFiled: April 3, 2019Date of Patent: October 8, 2024Assignee: Bristol-Myers Squibb CompanyInventors: Li-Sheng Lu, Mark J. Selby, Alan J. Korman, Shrikant Deshpande, Mohan Srinivasan, Jun Zhang, Haichun Huang, Guodong Chen, Richard Y. Huang, Ekaterina Deyanova
-
Patent number: 12060421Abstract: The present invention provides antibodies, or antigen binding fragments thereof, that bind to human TIGIT (T cell immunoreceptor with Ig and ITIM domains), as well as uses of these antibodies or fragments in therapeutic applications, such as in the treatment of cancer or chronic viral infection. Such method of treatment include combination therapy with inhibitors of other immunomodulatory receptor interactions, such as the PD-1/PD-L1 interaction. The invention further provides polynucleotides encoding the heavy and/or light chain variable region of the antibodies, expression vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies, cells comprising the vectors, and methods of making the antibodies or fragments by expressing them from the cells.Type: GrantFiled: April 12, 2021Date of Patent: August 13, 2024Assignee: BRISTOL-MYERS SQUIBB COMPANYInventors: Mark F. Maurer, Tseng-hui Timothy Chen, Brigitte Devaux, Mohan Srinivasan, Susan H. Julien, Paul O. Sheppard, Daniel F. Ardourel, Indrani Chakraborty
-
Publication number: 20240158524Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to glucocorticoid-inducible TNF receptor (GITR). Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.Type: ApplicationFiled: September 12, 2023Publication date: May 16, 2024Inventors: Changyu WANG, Nils LONBERG, Alan J. KORMAN, Mark J. SELBY, Mohan SRINIVASAN, Karla A. HENNING, Michelle Minhua HAN, Guodong CHEN, Richard HUANG, Indrani CHAKRABORTY, Haichun HUANG, Susan WONG, Huiming LI
-
Publication number: 20240141059Abstract: Provided herein are heavy chain constant regions (referred to as “modified heavy chain constant regions”), or functionally equivalent fragments thereof, that enhance biological properties of antibodies relative to the same antibodies in unmodified form. An exemplary modified heavy chain constant region includes an IgG2 hinge and three constant domains (i.e., CH1, CH2, and CH3 domains), wherein one or more of the constant region domains are of a non-IgG2 isotype (e.g., IgG1, IgG3 or IgG4). The heavy chain constant region may comprise wildtype human IgG domain sequences, or variants of these sequences. Also provided herein are methods for enhancing certain biological properties of antibodies that comprise a non-IgG2 hinge, such as internalization, agonism and antagonism, wherein the method comprises replacing the non-IgG2 hinge of the antibody with an IgG2 hinge.Type: ApplicationFiled: August 30, 2023Publication date: May 2, 2024Inventors: Nils LONBERG, Alan J. KORMAN, Mark J. SELBY, Bryan C. BARNHART, Aaron P. YAMNIUK, Mohan SRINIVASAN, Karla A. HENNING, Michelle Minhua HAN, Ming LEI, Liang SCHWEIZER, Sandra V. HATCHER, Arvind RAJPAL
-
Patent number: 11802162Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to glucocorticoid-inducible TNF receptor (GITR). Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.Type: GrantFiled: October 25, 2019Date of Patent: October 31, 2023Assignee: Bristol-Myers Squibb CompanyInventors: Changyu Wang, Nils Lonberg, Alan J. Korman, Mark J. Selby, Mohan Srinivasan, Karla A. Henning, Michelle Minhua Han, Guodong Chen, Richard Huang, Indrani Chakraborty, Haichun Huang, Susan Wong, Huiming Li
-
Publication number: 20230295346Abstract: A prodrugged antibody has a blocking moiety attached to a Cys on its heavy or light chain via a linker having a cleavable moiety. The blocking moiety inhibits binding of the antibody to its antigen. Cleavage of the cleavable moiety releases the blocking moiety and restores ability of the antibody to bind to its antigen.Type: ApplicationFiled: March 9, 2023Publication date: September 21, 2023Inventors: Stanley R. Krystek, JR., Yong Zhang, Gregory D. Vite, Arvind Rajpal, Chetana Rao-Naik, Paul E. Morin, Mohan Srinivasan, Zheng Lin, Virginie Lafont, Alla Pritsker
-
Publication number: 20230272100Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to OX40. Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.Type: ApplicationFiled: August 11, 2022Publication date: August 31, 2023Applicant: Bristol-Myers Squibb CompanyInventors: Zhehong CAI, Indrani CHAKRABORTY, Marie-Michelle Navarro GARCIA, Thomas D. KEMPE, Alan J. KORMAN, Alexander T. KOZHICH, Hadia LEMAR, Mark MAURER, Christina Maria MILBURN, Michael QUIGLEY, Xiang SHAO, Mohan SRINIVASAN, Kent THUDIUM, Susan Chien-Szu WONG, Jochem GOKEMEIJER, Xi-Tao WANG, Han CHANG, Patrick GUIRNALDA
-
Publication number: 20230272079Abstract: The present invention provides isolated monoclonal antibodies, particularly human monoclonal antibodies, that specifically bind to PD-1 with high affinity. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. The invention also provides methods for detecting PD-1, as well as methods for treating various diseases, including cancer and infectious diseases, using anti-PD-1 antibodies. The present invention further provides methods for using a combination immunotherapy, such as the combination of anti-CTLA-4 and anti-PD-1 antibodies, to treat hyperproliferative disease, such as cancer. The invention also provides methods for altering adverse events related to treatment with such antibodies individually.Type: ApplicationFiled: February 9, 2023Publication date: August 31, 2023Applicants: E.R. SQUIBB & SONS, L.L.C., Ono Pharmaceutical Co., LTD.Inventors: Alan J. KORMAN, Mohan SRINIVASAN, Changyu WANG, Mark J. SELBY, Bingliang CHEN, Josephine M. CARDARELLI, Haichun HUANG
-
Patent number: 11708405Abstract: The present invention provides isolated monoclonal antibodies, particularly human antibodies, that bind to IP-10 with high affinity, inhibit the binding of IP-10 to its receptor, inhibit IP-10-induced calcium flux and inhibit IP-10-induced cell migration. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. The invention also provides methods for inhibiting IP-10 activity using the antibodies of the invention, including methods for treating various inflammatory and autoimmune diseases.Type: GrantFiled: December 27, 2019Date of Patent: July 25, 2023Assignee: BRISTOL-MYERS QUIBB COMPANYInventors: Mohan Srinivasan, Shrikant Deshpande, Qihong Zhao, Huadong Sun, Ginger Rakestraw, Guodong Chen, Richard Y. Huang, Steven Sheriff, Cristian Rodriguez, John P. Throup, Rose A. Dibella
-
Publication number: 20230220102Abstract: Provided herein are antibodies that specifically bind to CD25. Also provided herein are methods of making the antibodies described, and methods of use thereof. For example, the CD25 antibodies may be used therapeutically to treat cancer or autoimmune diseases.Type: ApplicationFiled: May 13, 2021Publication date: July 13, 2023Inventors: Phung Tu GIP, Bing LI, Matthew P. GREVING, Matt LUNDBERG, Mohan SRINIVASAN
-
Patent number: 11623965Abstract: A prodrugged antibody has a blocking moiety attached to a Cys on its heavy or light chain via a linker having a cleavable moiety. The blocking moiety inhibits binding of the antibody to its antigen. Cleavage of the cleavable moiety releases the blocking moiety and restores ability of the antibody to bind to its antigen.Type: GrantFiled: August 14, 2018Date of Patent: April 11, 2023Assignee: Bristol-Myers Squibb CompanyInventors: Stanley R. Krystek, Jr., Yong Zhang, Gregory D. Vite, Arvind Rajpal, Chetana Rao-Naik, Paul E. Morin, Mohan Srinivasan, Zheng Lin, Virginie Lafont, Alla Pritsker
-
Publication number: 20230077348Abstract: The present invention provides isolated monoclonal antibodies that specifically bind LAG-3, and have optimized functional properties compared to previously described anti-LAG-3 antibodies, such as antibody 25F7 (US 2011/0150892 A1). These properties include reduced deamidation sites, while still retaining high affinity binding to human LAG-3, and physical (i.e., thermal and chemical) stability. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention arc also provided, as well as immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies. The present invention also provides methods for detecting LAG-3, as well as methods for treating stimulating immune responses using an anti-LAG-3 antibody of the invention. Combination therapy, in which the antibodies are co-administered with at least one additional immunostimulatory antibody, is also provided.Type: ApplicationFiled: May 2, 2022Publication date: March 16, 2023Applicant: Bristol-Myers Squibb CompanyInventors: Nils LONBERG, Mohan SRINIVASAN
-
Publication number: 20230061544Abstract: The present disclosure provides isolated monoclonal antibodies, particularly human monoclonal antibodies that specifically bind to PD-L1 with high affinity. Nucleic acid molecules encoding the antibodies of this disclosure, expression vectors, host cells and methods for expressing the antibodies of this disclosure are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. The disclosure also provides methods for detecting PD-L1, as well as methods for treating various diseases, including cancer and infectious diseases, using anti-PD-L1 antibodies.Type: ApplicationFiled: June 16, 2022Publication date: March 2, 2023Applicant: E.R. Squibb & Sons, L. L. C.Inventors: Alan J. KORMAN, Mark J. SELBY, Changyu WANG, Mohan SRINIVASAN, David B. PASSMORE, Haichun HUANG, Haibin CHEN
-
Publication number: 20230050665Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to glucocorticoid-inducible TNF receptor (GITR). Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.Type: ApplicationFiled: June 30, 2021Publication date: February 16, 2023Inventors: Changyu WANG, Nils LONBERG, Alan J. KORMAN, Mark J. SELBY, Mohan SRINIVASAN, Karla HENNING, Michelle Minhua HAN, Guodong CHEN, Richard HUANG, Indrani CHAKRABORTY, Haichun HUANG, Susan WONG, Huiming LI
-
Publication number: 20230051701Abstract: The present invention provides isolated monoclonal antibodies, particularly human antibodies, that bind to human Cluster of Differentiation 73 (CD73) with high affinity, and inhibit the activity of CD73, and optionally mediate antibody dependent CD73 internalization. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. The invention also provides methods for inhibiting the growth of a tumor cell expressing CD73 using the antibodies of the invention, including methods for treating various cancers.Type: ApplicationFiled: May 5, 2022Publication date: February 16, 2023Inventors: Nils Lonberg, Alan J. Korman, Bryan C. Barnhart, Aaron P. Yamniuk, Mohan Srinivasan, Karla A. Henning, Ming Lei, Emanuela Sega, Angela Goodenough, Maria N. Jure-Kunkel, Guodong Chen, John S. Sack, Richard Huang, Martin J. Corbett, Joseph E. Myers, JR., Liang Schweizer, Sandra V. Hatcher, Haichun Huang, Pingping Zhang
-
Publication number: 20230016112Abstract: Provided herein engineered polypeptides that comprise a combination of spatially-associated topological constraints, wherein at least one constraint is derived from a CD25 reference target, and methods of selecting said engineered polypeptides. Further provided are methods of using the engineered polypeptides, including as positive and/or negative selection molecules in methods of screening a library of binding molecules such as antibodies. Further provided herein are CD25 antibodies selected using these engineered polypeptides.Type: ApplicationFiled: May 13, 2021Publication date: January 19, 2023Inventors: Matthew P. GREVING, Phung Tu GIP, Mohan SRINIVASAN, Andrew MORIN, Kevin Eduard HAUSER, Jordan R. WILLIS, Cody A. MOORE, Christian BARRETT, Alex T. TAGUCHI, Angeles ESTELLES