Patents by Inventor Mohd Fadzli Anwar Hassan

Mohd Fadzli Anwar Hassan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140170338
    Abstract: A method for making low emissivity panels, including control the ion characteristics, such as ion energy, ion density and ion to neutral ratio, in a sputter deposition process of a layer deposited on a thin conductive silver layer. The ion control can prevent or minimize degrading the quality of the conductive silver layer, which can lead to better transmittance in visible regime, block more heat transfer from the low emissivity panels, and potentially can reduce the requirements for other layers, so that the overall performance, such as durability, could be improved.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: Intermolecular Inc.
    Inventors: Guowen Ding, Brent Boyce, Mohd Fadzli Anwar Hassan, Minh Huu Le, Zhi-Wen Wen Sun, Yu Wang
  • Publication number: 20140170049
    Abstract: A method for forming boron oxide films formed using reactive sputtering. The boron oxide films are candidates as an anti-reflection coating. Boron oxide films with a refractive index of about 1.38 can be formed. The boron oxide films can be formed using power densities between 2 W/cm2 and 11 W/cm2 applied to the target. The oxygen in the reactive sputtering atmosphere can be between 40 volume % and 90 volume %.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventors: Guowen Ding, Mohd Fadzli Anwar Hassan, Minh Huu Le, Zhi-Wen Sun, Yu Wang
  • Publication number: 20140170422
    Abstract: A method for making low emissivity panels, including forming a base layer to promote a seed layer for a conductive silver layer. The base layer can be an amorphous layer or a nanocrystalline layer, which can facilitate zinc oxide seed layer growth, together with smoother surface and improved thermal stability. The base layer can include doped tin oxide, for example, tin oxide doped with Al, Ga, In, Mg, Ca, Sr, Sb, Bi, Ti, V, Y, Zr, Nb, Hf, Ta, or any combination thereof. The doped tin oxide base layer can influence the growth of (002) crystallographic orientation in zinc oxide, which in turn serves as a seed layer template for silver (111).
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Yu Wang, Brent Boyce, Guowen Ding, Mohd Fadzli Anwar Hassan, Minh Huu Le, Haifan Liang, Zhi-Wen Wen Sun
  • Publication number: 20140168759
    Abstract: A method for making low emissivity panels, comprising forming a patterned layer on a transparent substrate. The patterned layers can offer different color schemes or different decorative appearance styles for the coated panels, or can offer gradable thermal efficiency through the patterned layers.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Minh Huu Le, Brent Boyce, Guowen Ding, Mohd Fadzli Anwar Hassan, Zhi-Wen Wen Sun
  • Publication number: 20140166472
    Abstract: A method for making low emissivity panels, comprising cooling the article before or during sputter depositing a coating layer, such as a seed layer or an infrared reflective layer. The cooling process can improve the quality of the infrared reflective layer, which can lead to better transmittance in visible regime, block more heat transfer from the low emissivity panels, and potentially can reduce the requirements for other layers, so that the overall performance, such as durability, could be improved.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Guowen Ding, Brent Boyce, Mohd Fadzli Anwar Hassan, Minh Huu Le, Zhi-Wen Wen Sun, Yu Wang
  • Patent number: 8747626
    Abstract: A method for forming and protecting high quality bismuth oxide films comprises depositing a transparent thin film on a substrate comprising one of Si, alkali metals, or alkaline earth metals. The transparent thin film is stable at room temperature and at higher temperatures and serves as a diffusion barrier for the diffusion of impurities from the substrate into the bismuth oxide. Reactive sputtering, sputtering from a compound target, or reactive evaporation are used to deposit a bismuth oxide film above the diffusion barrier.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: June 10, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Guowen Ding, Mohd Fadzli Anwar Hassan, Hien Minh Huu Le, Zhi-Wen Sun
  • Publication number: 20130319847
    Abstract: A method for making low emissivity panels, comprising forming highly smooth layers of silver on highly smooth layers of base or seed films. The highly smooth layers can be achieved by collimated sputtering, lowering the angular distribution of the sputtered particles when reaching the substrate.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 5, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Guowen Ding, Mohd Fadzli Anwar Hassan, Hien Minh Huu Le, Zhi-Wen Sun
  • Patent number: 8557615
    Abstract: A method for forming a transparent conductive oxide (TCO) film for use in a TFPV solar device comprises the formation of a tin oxide film doped with between about 5 volume % and about 40 volume % antimony (ATO). Advantageously, the Sb concentration generally ranges from about 15 volume % to about 20 volume % and more advantageously, the Sb concentration is about 19 volume %. The ATO films exhibited almost no change in transmission characteristics between about 300 nm and about 1100 nm or resistivity after either a 15 hour exposure to water or an anneal in air for 8 minutes at 650 C, which indicated the excellent durability. Control sample of Al doped zinc oxide (AZO) exhibited degradation of resistivity for both a 15 hour exposure to water and an anneal in air for 8 minutes at 650 C.
    Type: Grant
    Filed: December 3, 2011
    Date of Patent: October 15, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Guowen Ding, Mohd Fadzli Anwar Hassan, Hien Minh Huu Le, Zhi-Wen Sun
  • Publication number: 20130164560
    Abstract: Embodiments provided herein describe a low-e panel and a method for forming a low-e panel. A transparent substrate is provided. A metal oxynitride layer is formed over the transparent substrate. The metal oxynitride layer includes a first metal and a second metal. A reflective layer is formed over the transparent substrate.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 27, 2013
    Inventors: Mohd Fadzli Anwar Hassan, Richard Blacker, Yiwei Lu, Minh Anh Nguyen, Zhi-Wen Sun, Guowen Ding, Jingyu Lao, Hien Minh Huu Le
  • Publication number: 20130164561
    Abstract: Embodiments provided herein describe a low-e panel and a method for forming a low-e panel. A transparent substrate is provided. A metal oxide layer is formed over the transparent substrate. The metal oxide layer includes a first element, a second element, and a third element. A reflective layer is formed over the transparent substrate. The first element may include tin or zinc. The second element and the third element may each include tin, zinc, antimony, silicon, strontium, titanium, niobium, zirconium, magnesium, aluminum, yttrium, lanthanum, hafnium, or bismuth. The metal oxide layer may also include nitrogen.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 27, 2013
    Inventors: Mohd Fadzli Anwar Hassan, Richard Blacker, Guowen Ding, Jingyu Lao, Hien Minh Huu Le, Yiwei Lu, Minh Anh Nguyen, Zhi-Wen Sun
  • Publication number: 20130143354
    Abstract: A method for forming a transparent conductive oxide (TCO) film for use in a TFPV solar device comprises the formation of a tin oxide film doped with between about 5 volume % and about 40 volume % antimony (ATO). Advantageously, the Sb concentration generally ranges from about 15 volume % to about 20 volume % and more advantageously, the Sb concentration is about 19 volume %. The ATO films exhibited almost no change in transmission characteristics between about 300 nm and about 1100 nm or resistivity after either a 15 hour exposure to water or an anneal in air for 8 minutes at 650 C, which indicated the excellent duarability. Control sample of Al doped zinc oxide (AZO) exhibited degradation of resistivity for both a 15 hour exposure to water and an anneal in air for 8 minutes at 650 C.
    Type: Application
    Filed: December 3, 2011
    Publication date: June 6, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Guowen Ding, Mohd Fadzli Anwar Hassan, Hien Minh Huu Le, Zhi-Wen Sun
  • Publication number: 20130136919
    Abstract: A method for forming and protecting high quality bismuth oxide films comprises depositing a transparent thin film on a substrate comprising one of Si, alkali metals, or alkaline earth metals. The transparent thin film is stable at room temperature and at higher temperatures and serves as a diffusion barrier for the diffusion of impurities from the substrate into the bismuth oxide. Reactive sputtering, sputtering from a compound target, or reactive evaporation are used to deposit a bismuth oxide film above the diffusion barrier.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Guowen Ding, Mohd Fadzli Anwar Hassan, Hien Minh Huu Le, Zhi-Wen Sun
  • Publication number: 20130136851
    Abstract: A method for producing antimony doped tin oxide (ATO) films is discussed wherein the films are deposited by reactive sputtering using a non-poisoned mode and then annealed in an air ambient to fully oxidize the films and improve the resistivity and transmission characteristics, and the non-poisoned mode method could improve the throughput. A method using spectroscopic ellipsometry and an independent measurement of an additional optical or physical property is disclosed which results in a significantly improved prediction of the various optical and physical properties of the film, such that the method made the spectroscopic ellipsometry valuable for monitoring and controlling the process in real time, and valuable for determining the carrier density, mobility and their gradients within the film.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Guowen Ding, Mohd Fadzli Anwar Hassan, Hien Minh Huu Le, Zhin-Wen Sun
  • Publication number: 20130136932
    Abstract: A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Inventors: Mohd Fadzli Anwar Hassan, Richard Blacker, Guowen Ding, Muhammad Imran, Jingyu Lao, Hien Minh Huu Le, Yiwei Lu, Zhi-Wen Sun
  • Publication number: 20130108862
    Abstract: Embodiments provided herein describe a low-e panel and a method for forming a low-e panel. A transparent substrate is provided. A metal seed layer is formed over the transparent substrate. The metal seed layer includes titanium, zirconium, hafnium, or a combination thereof. A reflective layer is formed on the metal seed layer. The metal seed layer may be continuous, or alternatively, the metal seed layer may be formed in multiple sections.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 2, 2013
    Inventors: Mohd Fadzli Anwar Hassan, Hien Minh Huu Le, Richard Blacker, Jingyu Lao, Yiwei Lu
  • Publication number: 20120168304
    Abstract: Embodiments of the current invention describe a physical vapor deposition tool. The physical vapor deposition tool includes a housing, a substrate support positioned within the housing and configured to support a substrate, a first process head positioned over the substrate support and having a first target, a second process head positioned over the substrate support and having a second target, and a gas line to provide gas to the first process head. The first process head and the gas line are configured such that the gas provided to the first process head through the gas line interacts with ions ejected from the first target and does not interact with ions ejected from the second target.
    Type: Application
    Filed: December 30, 2010
    Publication date: July 5, 2012
    Inventors: Hien Minh Huu Le, Mohd Fadzli Anwar Hassan
  • Publication number: 20120006385
    Abstract: High performance multi-layer back contact stacks for silicon solar cells and methods for manufacture are disclosed. Photovoltaic modules incorporating high performance multi-layer back contact stacks and methods for making the same are also described.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 12, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Mohd Fadzli Anwar Hassan, Hien-Minh Huu Le
  • Publication number: 20110162704
    Abstract: A method and apparatus for forming a protective coating on a photovoltaic device is provided. The photovoltaic device is formed by depositing photoelectric conversion units on a substrate, and by forming conductive layers and contacts on the photoelectric conversion units. The protective coating is formed by a deposition process, such as physical or chemical vapor deposition.
    Type: Application
    Filed: December 10, 2010
    Publication date: July 7, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Hien-Minh Huu Le, Mohd Fadzli Anwar Hassan, David Tanner
  • Publication number: 20110126875
    Abstract: Methods for sputter depositing a transparent conductive layer and a conductive contact layer are provided in the present invention. In one embodiment, the method includes forming a transparent conductive layer on a substrate by materials sputtered from a first target disposed in a reactive sputter chamber, and forming a conductive contact layer on the transparent conductive layer by materials sputtered from a second target disposed in the reactive sputter chamber.
    Type: Application
    Filed: December 1, 2009
    Publication date: June 2, 2011
    Inventors: Hien-Minh Huu Le, Valery V. Komin, David Tanner, Mohd Fadzli Anwar Hassan, Tzay-Fa Su, Dapeng Wang
  • Publication number: 20110088763
    Abstract: A method and apparatus for improving efficiency of photovoltaic cells by improving light capture between the photoelectric unit and back reflector is provided. A transition layer is formed at the interface between the photoelectric unit and transmitting conducting layer of the back reflector by adding oxygen, nitrogen, or both to the surface of the photoelectric unit or the interface between the photoelectric unit and the transmitting conducting layer. The transition layer may comprise silicon, oxygen, or nitrogen, and may be silicon oxide, silicon nitride, metal oxide with excess oxygen, metal oxide with nitrogen, or any combination thereof, including bilayers and multi-layers. The sputtering process for forming the transmitting conducting layer may feature at least one of nitrogen and excess oxygen, and may be performed by sputtering at low power, followed by an operation to form the rest of the transmitting conductive layer.
    Type: Application
    Filed: October 14, 2010
    Publication date: April 21, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Hien-Minh Huu Le, Mohd Fadzli Anwar Hassan, David Tanner, Dapeng Wang