Patents by Inventor Mohsen N. Harandi

Mohsen N. Harandi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200063038
    Abstract: A method upgrading waste to produce fuel can include: introducing a hydrocarbon feed stream into a 450° C. to 1050° C. coking zone of a reactor containing a fluidized bed of coke particles maintained at coking temperatures to produce a vapor phase hydrocarbon product while coke is deposited on the coke particles; allowing the coke particles to pass downwards to a stripper section of the reactor; introducing a steam stream into the stripper section; transferring the coke particles from the stripper section to a gasifier/burner; contacting the coke particles in the gasifier/burner an oxygen-containing gas in an oxygen-limited atmosphere at 850° C. to 1200° C. to heat the coke particles and form a fuel gas product that comprises carbon monoxide and hydrogen; recycling the heated coke particles from the gasifier/burner to the coking zone of the reactor; and introducing at least one waste stream to the reactor and/or the gasifier/burner.
    Type: Application
    Filed: August 8, 2019
    Publication date: February 27, 2020
    Inventor: Mohsen N. Harandi
  • Publication number: 20200063039
    Abstract: A method for reducing CO2 emissions from steam cracking operations can include: introducing an oxygen-rich stream comprising oxygen and from 0 wt % to 15 wt % nitrogen to a vessel; introducing hydrocarbon combustion fuel to the vessel; combusting oxygen and hydrocarbon combustion fuel in the vessel to (1) produce a flue gas comprising carbon dioxide and water and (2) heat a cracking coil passing through the vessel; and performing a steam cracking reaction in the cracking coil passing through the vessel.
    Type: Application
    Filed: August 2, 2019
    Publication date: February 27, 2020
    Inventors: Mohsen N. Harandi, Michael F. Raterman, David B. Spry
  • Publication number: 20200047142
    Abstract: A process and system that use the heat produced in the generation of Syngas to provide heat to an endothermic reaction zone are disclosed. A method for providing heat to an endothermic reaction may comprise producing Syngas in a reforming reactor. The method may further comprise recovering heat from the producing the Syngas to heat an endothermic reaction stream in a heat transfer zone. The method may further comprise allowing reactants in the endothermic reaction stream to react to form an endothermic reaction product stream. The method may further comprise withdrawing the endothermic reaction product stream from the heat transfer zone.
    Type: Application
    Filed: June 26, 2019
    Publication date: February 13, 2020
    Inventor: Mohsen N. Harandi
  • Patent number: 10550341
    Abstract: Methods are provided for producing lubricant base stocks from deasphalted oils formed by sequential deasphalting. The deasphalted oil can be exposed a first deasphalting process using a first solvent that can provide a lower severity of deasphalting and a second deasphalting process using a second solvent that can provide a higher severity of deasphalting. This can result in formation of at least a deasphalted oil and a resin fraction. The resin fraction can represent a fraction that traditionally would have been included as part of a deasphalter rock fraction.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: February 4, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mohsen N. Harandi, Doron Levin, Himanshu Gupta, James R. Lattner, Glenn C. Wood, Keith K. Aldous, Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl
  • Patent number: 10519383
    Abstract: A method for converting methanol to gasoline boiling range hydrocarbons is disclosed. In an aspect the method includes feeding crude methanol from a methanol synthesis reactor to a methanol separation vessel to recover a methanol stream in a vapor phase; and without condensing the methanol stream, feeding the methanol stream in the vapor phase to a reactor containing a conversion catalyst for converting methanol to at least one of dimethyl ether or gasoline boiling range hydrocarbons.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: December 31, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGNEERING COMPANY
    Inventors: Mitch L. Hindman, Mohsen N. Harandi, Suriyanarayanan Rajagopalan
  • Publication number: 20190359899
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: August 6, 2019
    Publication date: November 28, 2019
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Publication number: 20190338203
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Patent number: 10414991
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: September 17, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Benjamin S. Umansky, Himanshu Gupta, John D. Nelson, Cindy J. Hughart, Jane C. Cheng, Steven W. Levine, Stephen H. Brown, Todd P. Marut, David C. Dankworth, Stuart L. Soled, Thomas F. Degnan, Jr., Robert J. Falkiner, Mohsen N. Harandi, Juan D. Henao, Lei Zhang, Chuansheng Bai, Richard C. Dougherty
  • Patent number: 10407631
    Abstract: Systems and methods are provided for producing high quality synthesis gas from a fluidized coking system that includes an integrated gasifier. Additionally or alternately, systems and methods are provided for integrating a fluidized coking process, a coke gasification process, and processes for production of compounds from the synthesis gas generated during the coke gasification. The integrated process can also allow for reduced or minimized production of inorganic nitrogen compounds by using oxygen from an air separation unit as the oxygen source for gasification. Although the amount of nitrogen introduced as a diluent into the gasification will be reduced, minimized, or eliminated, the integrated process can also allow for gasification of coke while reducing, minimizing, or eliminating production of slag or other glass-like substances in the gasifier. Examples of compounds that can be produced from the synthesis gas include, but are not limited to, methanol, ammonia, and urea.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: September 10, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mohsen N. Harandi, Suriyanarayanan Rajagopalan
  • Patent number: 10399913
    Abstract: In a process for upgrading paraffins and olefins, a first feed comprising C14? olefins is contacted with an oligomerization catalyst in a first reaction zone under conditions effective for oligomerization of olefins to higher molecular weight hydrocarbons. Deactivated catalyst is removed from the first reaction zone at a first temperature and is contacted with an oxygen-containing gas and a hydrocarbon-containing fuel in a regeneration zone to regenerate the catalyst and raise the temperature of the catalyst to a second, higher temperature. A second feed comprising C14? paraffins is contacted with the regenerated catalyst in a second reaction zone to convert at least some of the paraffins in the second feed to a reaction effluent comprising olefins, aromatic hydrocarbons and regenerated catalyst; and the reaction effluent is supplied to the first reaction zone. A system for performing such a process and a product of such a process are also provided.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: September 3, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mohsen N. Harandi, John Dusseault
  • Patent number: 10400177
    Abstract: Systems and methods are provided for integrating a fluidized coking process, optionally a coke gasification process, and processes for production of additional liquid products from the coking and/or gasification process. In some aspects, the integrated processes can allow for conversion of olefins generated during a fluidized coking process to form additional liquid products. Additionally or alternately, in some aspects the integrated processes can allow for separation of syngas from the flue gas/fuel gas generated by a gasifier integrated with a fluidized coking process. This syngas can then be used to form methanol, which can then be converted in a methanol conversion process to form heavier products. In such aspects, olefins generated during the fluidized coking process can be added to the methanol conversion process to improve the yield.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: September 3, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Tien V. Le, Brenda A. Raich, Bing Du, Mohsen N. Harandi, Suriyanarayanan Rajagopalan
  • Publication number: 20190194088
    Abstract: In a process for upgrading paraffins and olefins, a first feed comprising C14? olefins is contacted with an oligomerization catalyst in a first reaction zone under conditions effective for oligomerization of olefins to higher molecular weight hydrocarbons. Deactivated catalyst is removed from the first reaction zone at a first temperature and is contacted with an oxygen-containing gas and a hydrocarbon-containing fuel in a regeneration zone to regenerate the catalyst and raise the temperature of the catalyst to a second, higher temperature. A second feed comprising C14? paraffins is contacted with the regenerated catalyst in a second reaction zone to convert at least some of the paraffins in the second feed to a reaction effluent comprising olefins, aromatic hydrocarbons and regenerated catalyst; and the reaction effluent is supplied to the first reaction zone. A system for performing such a process and a product of such a process are also provided.
    Type: Application
    Filed: December 12, 2018
    Publication date: June 27, 2019
    Inventors: Mohsen N. HARANDI, John DUSSEAULT
  • Publication number: 20190144756
    Abstract: Systems and methods are provided for integrating a fluidized coking process, optionally a coke gasification process, and processes for production of additional liquid products from the coking and/or gasification process. In some aspects, the integrated processes can allow for conversion of olefins generated during a fluidized coking process to form additional liquid products. Additionally or alternately, in some aspects the integrated processes can allow for separation of syngas from the flue gas/fuel gas generated by a gasifier integrated with a fluidized coking process. This syngas can then be used to form methanol, which can then be converted in a methanol conversion process to form heavier products. In such aspects, olefins generated during the fluidized coking process can be added to the methanol conversion process to improve the yield.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 16, 2019
    Inventors: Tien V. Le, Brenda A. Raich, Bing Du, Mohsen N. Harandi, Suriyanarayanan Rajagopalan
  • Publication number: 20190144273
    Abstract: A process for providing heat to an industrial facility comprises contacting a hydrocarbon fuel with oxygen in a reaction zone under partial oxidation conditions including a below stoichiometric oxygen to fuel molar ratio for full combustion to generate heat in the reaction zone and produce a gaseous effluent stream containing carbon monoxide. At least part of the carbon monoxide from the gaseous effluent stream is converted to one or more of chemical products different from carbon monoxide transferring at least part of the heat generated in reaction zone and/or contained in the gaseous effluent stream is transferred to a separate operation in the industrial facility.
    Type: Application
    Filed: November 14, 2018
    Publication date: May 16, 2019
    Inventor: Mohsen N. Harandi
  • Publication number: 20190144768
    Abstract: Systems and methods are provided for producing high quality synthesis gas from a fluidized coking system that includes an integrated gasifier. Additionally or alternately, systems and methods are provided for integrating a fluidized coking process, a coke gasification process, and processes for production of compounds from the synthesis gas generated during the coke gasification. The integrated process can also allow for reduced or minimized production of inorganic nitrogen compounds by using oxygen from an air separation unit as the oxygen source for gasification. Although the amount of nitrogen introduced as a diluent into the gasification will be reduced, minimized, or eliminated, the integrated process can also allow for gasification of coke while reducing, minimizing, or eliminating production of slag or other glass-like substances in the gasifier. Examples of compounds that can be produced from the synthesis gas include, but are not limited to, methanol, ammonia, and urea.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 16, 2019
    Inventors: Mohsen N. Harandi, Suriyanarayanan Rajagopalan
  • Publication number: 20190112537
    Abstract: A Flexicoking™ unit which retains the capability of converting heavy oil feeds to lower boiling liquid hydrocarbon products while making a fuel gas from rejected coke to provide only a minimal coke yield. The heater section of the conventional three section unit (reactor, heater, gasifier) is eliminated and all or a portion of the cold coke from the reactor is passed directly to the gasifier which is modified by the installation of separators to remove coke particles from the product gas which is taken out of the gasifier for ultization. In one embodiment, a portion of cold coke is transferred directly from the reactor to the gasifier, and another portion of cold coke is combined with hot, partly gasified coke particles transferred directly from the gasifier to the reactor. The hot coke from the gasifier is passed directly to the coking zone of the reactor to supply heat to support the endothermic cracking reactions and supply seed nuclei for the formation of coke in the reactor.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 18, 2019
    Inventors: Suriyanarayanan Rajagopalan, Glen E. Phillips, Mohsen N. Harandi
  • Patent number: 10173946
    Abstract: Apparatuses and processes for converting an oxygenate feedstock, such as methanol and/or dimethyl ether, in a fluidized bed containing a catalyst to hydrocarbons, such as gasoline boiling components, olefins and aromatics are provided herein.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: January 8, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Bing Du, Samuel A. Tabak, Mitch L. Hindman, Eric B. Shen, David L. Johnson, Mohsen N. Harandi, Clay R. Sutton, Lu Han, Michael F. Raterman, Zhongcheng Wang, Samia Ilias, Brett Loveless, Stephen J. McCarthy
  • Publication number: 20180291280
    Abstract: A method for converting methanol to gasoline boiling range hydrocarbons is disclosed. In an aspect the method includes feeding crude methanol from a methanol synthesis reactor to a methanol separation vessel to recover a methanol stream in a vapor phase; and without condensing the methanol stream, feeding the methanol stream in the vapor phase to a reactor containing a conversion catalyst for converting methanol to at least one of dimethyl ether or gasoline boiling range hydrocarbons.
    Type: Application
    Filed: March 22, 2018
    Publication date: October 11, 2018
    Inventors: Mitch L. HINDMAN, Mohsen N. HARANDI, Suriyanarayanan RAJAGOPALAN
  • Publication number: 20180171242
    Abstract: Methods and systems are disclosed for upgrading a paraffinic feed to gasoline. The system includes a fluidized cracker receiving a paraffin-containing feedstream and producing an olefin product therefrom, the olefin product comprising C4 olefins; a separation system receiving the olefinic product and separating an olefin-containing feed therefrom, the olefin-containing feed having an olefin content of at least about 10 wt %; and an oligomerization reaction system receiving the olefin-containing feed and exposing the olefin-containing feed to a conversion catalyst under first effective conversion conditions to form an oligomerized olefin effluent comprising C5+ olefinic compounds.
    Type: Application
    Filed: November 29, 2017
    Publication date: June 21, 2018
    Inventor: Mohsen N. Harandi
  • Publication number: 20180171247
    Abstract: Methods are provided for dewaxing a distillate fuel boiling range feed to improve one or more cold flow properties of the distillate fuel feed, such as cloud point. The dewaxing can be performed in the presence of an olefin co-feed that allows for an increase in the average temperature for exposure of the feed to the dewaxing catalyst. If the dewaxing catalyst is included in a reactor that also includes other hydroprocessing catalyst(s), the olefin co-feed can optionally be introduced into the reactor at a location after the hydroprocessing catalyst bed(s) and prior to the dewaxing catalyst bed(s). Due to the relative ease of performing olefin saturation in the presence of a catalyst with a hydrogenation metal, a substantial portion of the olefins in an olefin co-feed (such as substantially all) can be converted to alkanes. Olefin saturation is exothermic, so the conversion of olefins to alkanes can provide a temperature increase for a feed as it is being exposed to catalyst in a catalyst bed.
    Type: Application
    Filed: December 4, 2017
    Publication date: June 21, 2018
    Inventors: Kathryn L. PERETTI, Mohsen N. Harandi