Patents by Inventor Mohsen S. Salek

Mohsen S. Salek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170040205
    Abstract: Disclosed herein, a contact pad for use on a robot arm in transfer chamber in a wafer processing tool is provided, comprising an elastomer body and a high hardness powder doping a surface of the elastomer body.
    Type: Application
    Filed: July 26, 2016
    Publication date: February 9, 2017
    Inventors: Jacob L. Hiester, Richard M. Blank, Tyson L. Ringold, Peter J. Woytowitz, Mohsen S. Salek
  • Patent number: 9502294
    Abstract: A method of singulating a plurality of semiconductor dies includes providing a carrier substrate and joining a semiconductor substrate to the carrier substrate. The semiconductor substrate includes a plurality of devices. The method also includes forming a mask layer on the semiconductor substrate, exposing a predetermined portion of the mask layer to light, and processing the predetermined portion of the mask layer to form a predetermined mask pattern on the semiconductor substrate. The method further includes forming the plurality of semiconductor dies, each of the plurality of semiconductor dies being associated with the predetermined mask pattern and including one or more of the plurality of devices and separating the plurality of semiconductor dies from the carrier substrate.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: November 22, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Klaus Schuegraf, Seshadri Ramaswami, Michael R. Rice, Mohsen S. Salek, Claes H. Bjorkman
  • Publication number: 20140196850
    Abstract: A method of singulating a plurality of semiconductor dies includes providing a carrier substrate and joining a semiconductor substrate to the carrier substrate. The semiconductor substrate includes a plurality of devices. The method also includes forming a mask layer on the semiconductor substrate, exposing a predetermined portion of the mask layer to light, and processing the predetermined portion of the mask layer to form a predetermined mask pattern on the semiconductor substrate. The method further includes forming the plurality of semiconductor dies, each of the plurality of semiconductor dies being associated with the predetermined mask pattern and including one or more of the plurality of devices and separating the plurality of semiconductor dies from the carrier substrate.
    Type: Application
    Filed: November 8, 2013
    Publication date: July 17, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Klaus Schuegraf, Seshadri Ramaswami, Michael R. Rice, Mohsen S. Salek, Claes H. Bjorkman
  • Patent number: 8580615
    Abstract: A method of singulating a plurality of semiconductor dies includes providing a carrier substrate and joining a semiconductor substrate to the carrier substrate. The semiconductor substrate includes a plurality of devices. The method also includes forming a mask layer on the semiconductor substrate, exposing a predetermined portion of the mask layer to light, and processing the predetermined portion of the mask layer to form a predetermined mask pattern on the semiconductor substrate. The method further includes forming the plurality of semiconductor dies, each of the plurality of semiconductor dies being associated with the predetermined mask pattern and including one or more of the plurality of devices and separating the plurality of semiconductor dies from the carrier substrate.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: November 12, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Klaus Schuegraf, Seshadri Ramaswami, Michael R. Rice, Mohsen S. Salek, Claes H. Bjorkman
  • Patent number: 8550031
    Abstract: Embodiments of the invention generally include a robot assembly comprising a robot operable to position a substrate at one or more points within a plane, and a motion assembly having a motor operable to position the robot in a direction generally parallel to a first direction. The motion assembly comprises a robot support interface having the robot coupled thereto, and one or more walls that form an interior region in which the motor is enclosed. The walls define an elongated opening through which the robot support interface travels, and the motor is operable to move the robot support interface laterally in the elongated opening. The motion assembly further comprises one or more fan assemblies that are in fluid communication with the interior region. The fan assemblies are operable to create a subatmospheric pressure in the interior region thereby causing gas to flow through the elongated opening into the interior region.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: October 8, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20130045570
    Abstract: A method of singulating a plurality of semiconductor dies includes providing a carrier substrate and joining a semiconductor substrate to the carrier substrate. The semiconductor substrate includes a plurality of devices. The method also includes forming a mask layer on the semiconductor substrate, exposing a predetermined portion of the mask layer to light, and processing the predetermined portion of the mask layer to form a predetermined mask pattern on the semiconductor substrate. The method further includes forming the plurality of semiconductor dies, each of the plurality of semiconductor dies being associated with the predetermined mask pattern and including one or more of the plurality of devices and separating the plurality of semiconductor dies from the carrier substrate.
    Type: Application
    Filed: February 17, 2012
    Publication date: February 21, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Klaus Schuegraf, Seshadri Ramaswami, Michael R. Rice, Mohsen S. Salek, Claes H. Bjorkman
  • Publication number: 20120320361
    Abstract: Embodiments of the invention generally include a robot assembly comprising a robot operable to position a substrate at one or more points within a plane, and a motion assembly having a motor operable to position the robot in a direction generally parallel to a first direction. The motion assembly comprises a robot support interface having the robot coupled thereto, and one or more walls that form an interior region in which the motor is enclosed. The walls define an elongated opening through which the robot support interface travels, and the motor is operable to move the robot support interface laterally in the elongated opening. The motion assembly further comprises one or more fan assemblies that are in fluid communication with the interior region. The fan assemblies are operable to create a subatmospheric pressure in the interior region thereby causing gas to flow through the elongated opening into the interior region.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 20, 2012
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchem, Brian Lue
  • Publication number: 20120180983
    Abstract: The present invention generally provides a cluster tool for processing a substrate. In one embodiment, the cluster tool comprises at least one processing rack, which comprises a first plurality of substrate processing chambers that are positioned adjacent to each other and aligned in a first direction, a second plurality of substrate processing chambers that are positioned adjacent to each other and adjacent to at least one of the first plurality of substrate processing chambers, the second plurality of substrate processing chambers being positioned in a second direction relative to the first direction, a first shuttle robot movable in the first direction for moving substrates between each of the first plurality of substrate processing chambers, and a second shuttle robot movable in the second direction for moving substrates between each of the second plurality of substrate processing chambers.
    Type: Application
    Filed: March 2, 2012
    Publication date: July 19, 2012
    Inventors: TETSUYA ISHIKAWA, RICK J. ROBERTS, HELEN R. ARMER, LEON VOLFOVSKI, JAY D. PINSON, MICHAEL RICE, DAVID H. QUACH, MOHSEN S. SALEK, ROBERT LOWRANCE, JOHN A. BACKER, WILLIAM TYLER WEAVER, CHARLES CARLSON, CHONGYANG WANG, JEFFREY HUDGENS, HARALD HERCHEN, BRIAN LUE
  • Patent number: 8215262
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, a cluster tool for processing a substrate includes a first processing rack, a first robot assembly and a second robot assembly operable to transfer substrates to substrate processing chambers in the first processing rack, and a horizontal motion assembly. The horizontal motion assembly includes one or more walls that form an interior region in which a motor is enclosed. The one or more walls defining an elongated opening through which a robot support interface travels, the robot support interface supporting a robot of the horizontal motion assembly.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: July 10, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lu
  • Patent number: 8181596
    Abstract: An apparatus for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, a smaller system footprint, and a more repeatable wafer history. Embodiments provide for a cluster tool comprising first and second processing racks, each having two or more vertically stacked substrate processing chambers, a first robot assembly able to access the first processing rack from a first side, a second robot assembly able to access the first processing rack from a second side and the second processing rack from a first side, a third robot assembly able to access the second processing rack from a second side, and a fourth robot assembly able to access the first and second processing racks and to load substrates in a cassette.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: May 22, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lu
  • Patent number: 8146530
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. Embodiments also provide for a method and apparatus that are used to improve the coater chamber, the developer chamber, the post exposure bake chamber, the chill chamber, and the bake chamber process results. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: April 3, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lu
  • Patent number: 7925377
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment of the cluster tool, grouping substrates together, and transferring and processing the substrates in groups of two or more, improves system throughput, and reduces the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, thus reducing wear on the robot and increasing system reliability. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: April 12, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue, John A. Backer
  • Patent number: 7743728
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool). In one embodiment, the cluster tool is adapted to perform a track lithography process in which a photosensitive material is applied to a substrate, patterned in a stepper/scanner, and then removed in a developing process completed in the cluster tool. In one embodiment of the cluster tool, substrates are grouped together in groups of two or more for transfer or processing to improve system throughput, reduce the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, and thus increase system reliability. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Patent number: 7694647
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. Embodiments also provide for a method and apparatus that are used to improve the coater chamber, the developer chamber, the post exposure bake chamber, the chill chamber, and the bake chamber process results. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20090110532
    Abstract: An apparatus for centering a substrate in a track lithography tool includes a processing chamber having an opening large enough to admit the substrate. The processing chamber includes a substrate support member. The substrate is characterized by a diameter and comprises a mounting surface, a process surface, and an edge. The apparatus also includes a clamped robot blade including a substrate support surface adapted to support the mounting surface of the substrate, two edge contact regions, and a base contact region. The clamped robot blade also includes a clamping system adapted to move at least one of the two edge contact regions or the base contact region from an unclamped position to a clamped position, thereby making contact between the edge of the substrate and the two edge contact regions and the base contact region in the clamped position. The apparatus further includes a robot arm coupled to the clamped robot blade.
    Type: Application
    Filed: October 29, 2007
    Publication date: April 30, 2009
    Applicant: SOKUDO CO., LTD.
    Inventor: Mohsen S. Salek
  • Publication number: 20090064929
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool.
    Type: Application
    Filed: October 20, 2008
    Publication date: March 12, 2009
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lu
  • Publication number: 20090064928
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool.
    Type: Application
    Filed: October 20, 2008
    Publication date: March 12, 2009
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20090067956
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool.
    Type: Application
    Filed: October 20, 2008
    Publication date: March 12, 2009
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20080223293
    Abstract: A cluster tool for processing a substrate includes a cassette and a processing module including a first process chamber that is configured to perform a chill process on a substrate, a second processing chamber that is configured to perform a bake process on the substrate, and an input chamber. The first processing chamber, the second processing chamber, and the input chamber are substantially adjacent to each other. The processing modules also includes a robot that is configured to receive the substrate in the input chamber and transfer and position the substrate in the first processing chamber and second processing chamber. The robot includes a robot blade, an actuator, and a heat exchanging device. The heat exchanging device includes a chilled transfer assembly. The cluster tool also includes a 6-axis articulated robot configured to transfer the substrate between the cassette and the input chamber.
    Type: Application
    Filed: February 19, 2008
    Publication date: September 18, 2008
    Applicant: Sokudo Co,. Ltd.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20080199282
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool). In one embodiment, the cluster tool is adapted to perform a track lithography process in which a photosensitive material is applied to a substrate, patterned in a stepper/scanner, and then removed in a developing process completed in the cluster tool. In one embodiment of the cluster tool, substrates are grouped together in groups of two or more for transfer or processing to improve system throughput, reduce the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, and thus increase system reliability. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Application
    Filed: April 21, 2008
    Publication date: August 21, 2008
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue