Patents by Inventor Mohsen Sharifzadeh

Mohsen Sharifzadeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230086512
    Abstract: The present disclosure relates to optical methods and devices based on pulsate behavior of blood and optical absorption spectroscopy to measure the level of water and/or other substances or compounds, such as an alcohol or lipid, in the blood and the tissues surrounding blood vessels and arteries.
    Type: Application
    Filed: November 30, 2022
    Publication date: March 23, 2023
    Inventor: Mohsen Sharifzadeh
  • Patent number: 11547331
    Abstract: The present disclosure relates to optical methods and devices based on pulsate behavior of blood and optical absorption spectroscopy to measure the level of water and/or other substances or compounds, such as an alcohol or lipid, in the blood and the tissues surrounding blood vessels and arteries.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: January 10, 2023
    Inventor: Mohsen Sharifzadeh
  • Publication number: 20220000358
    Abstract: The present disclosure provides improved techniques for imaging and/or measuring a subject's eye. Various aspects of the present disclosure relate to a portable imaging and/or measuring apparatus comprising one or more imaging and/or measuring devices. Some aspects of the present disclosure relate to an imaging and/or measuring device comprising an adjustable flexure having one or more lenses therein. Some aspects of the present disclosure relate to an imaging and/or measuring device comprising an adjustable flexure configured to provide variable diopter compensation. Some aspects of the present disclosure relate to a method comprising imaging and/or measuring a person's eye using an adjustable flexure within an imaging and/or measuring device, the adjustable flexure having one or more lenses therein. Some aspects of the present disclosure relate to a method comprising providing variable diopter compensation for imaging and/or measuring a person's eye using an adjustable flexure.
    Type: Application
    Filed: July 1, 2021
    Publication date: January 6, 2022
    Inventors: Jacob Coumans, Tyler S. Ralston, Mark M. Meyers, Maurizio Arienzo, Paul E. Glenn, Jonathan M. Rothberg, Mohsen Sharifzadeh
  • Patent number: 9968250
    Abstract: A method, system, and computer program product are disclosed for diagnosing a condition of an eye such as macular degeneration and/or cataracts. The system may include an optical system, which may project light at an eye and record lipofuscin fluorescence from a retina of the eye to form an image of the retina. A computing device may process the image to apply one or more image acceptance criteria and/or one or more image clarity criteria. If the image fails to meet the one or more image acceptance criteria, the image may be re-taken. Based on the level of conformance of the image to the one or more image clarity criteria, the system may indicate that the macular pigment level cannot be provided with confidence, indicate that the eye likely has one or more cataracts, and/or calculate and provide the macular pigment content based on a correction factor, if needed.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: May 15, 2018
    Assignee: Image Technologies Corporation
    Inventors: Mohsen Sharifzadeh, Werner Gellermann
  • Patent number: 9814417
    Abstract: Methods and apparatus are disclosed which facilitate the rapid, noninvasive and quantitative measurement of the concentration of flavonoid compounds, as well as their isomers and metabolites, in biological tissue such as human skin. Low-intensity, visible-light illumination of intact tissue provides for high spatial resolution, and allows for precise quantification of the flavonoid levels in the tissue. The preferred embodiments make use of a previously unknown, low-oscillator strength, optical absorption transition of flavonoids. This makes it possible to optically excite flavonoids in living human tissue outside the absorption range of other, potentially confounding skin chromophores.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: November 14, 2017
    Assignee: Longevity Link Corporation
    Inventors: Mohsen Sharifzadeh, Igor V. Ermakov, Werner Gellermann
  • Publication number: 20150238074
    Abstract: A method, system, and computer program product are disclosed for diagnosing a condition of an eye such as macular degeneration and/or cataracts. The system may include an optical system, which may project light at an eye and record lipofuscin fluorescence from a retina of the eye to form an image of the retina. A computing device may process the image to apply one or more image acceptance criteria and/or one or more image clarity criteria. If the image fails to meet the one or more image acceptance criteria, the image may be re-taken. Based on the level of conformance of the image to the one or more image clarity criteria, the system may indicate that the macular pigment level cannot be provided with confidence, indicate that the eye likely has one or more cataracts, and/or calculate and provide the macular pigment content based on a correction factor, if needed.
    Type: Application
    Filed: March 11, 2014
    Publication date: August 27, 2015
    Applicant: Image Technologies Corporation
    Inventors: Mohsen Sharifzadeh, Werner Gellermann, Masayuki Yoshino, Tokio Ueno, Masahiko Kobayashi
  • Publication number: 20150238075
    Abstract: A method, system, and computer program product are disclosed for diagnosing a condition of an eye such as macular degeneration and/or cataracts. The system may include an optical system, which may project light at an eye and record lipofuscin fluorescence from a retina of the eye to form an image of the retina. A computing device may process the image to apply one or more image acceptance criteria and/or one or more image clarity criteria. If the image fails to meet the one or more image acceptance criteria, the image may be re-taken. Based on the level of conformance of the image to the one or more image clarity criteria, the system may indicate that the macular pigment level cannot be provided with confidence, indicate that the eye likely has one or more cataracts, and/or calculate and provide the macular pigment content based on a correction factor, if needed.
    Type: Application
    Filed: November 7, 2014
    Publication date: August 27, 2015
    Inventors: Mohsen Sharifzadeh, Werner Gellermann
  • Publication number: 20140058224
    Abstract: A method for measuring and quantifying biological compounds is described. A first side of a sample is illuminated with a light source. Light transmitted from a second side of the sample is detected. The second side of the sample is opposite the first side of the sample. A result is obtained based on the detected light.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 27, 2014
    Applicant: Opticks, Inc.
    Inventors: Werner Gellermann, Mohsen Sharifzadeh
  • Patent number: 8326405
    Abstract: Macular pigments are measured by spectrally selective lipofuscin detection. Light from a light source that emits light at a selected range of wavelengths that overlap the absorption band of macular carotenoids is directed onto macular tissue of an eye for which macular pigment levels are to be measured. Emitted light is then collected from the macular tissue. The collected light is filtered so that the collected light includes lipofuscin emission from the macular tissue at an excitation wavelength that lies outside the macular pigment absorption range and outside the excitation range of interfering fluorophores. The collected light is quantified at each of a plurality of locations in the macular tissue and the macular pigment levels in the macular tissue are determined from the differing lipofuscin emission intensities in the macula and peripheral retina.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: December 4, 2012
    Assignee: The University of Utah Research Foundation
    Inventors: Werner Gellermann, Mohsen Sharifzadeh
  • Publication number: 20120081668
    Abstract: Macular pigments are measured by spectrally selective lipofuscin detection. Light from a light source that emits light at a selected range of wavelengths that overlap the absorption band of macular carotenoids is directed onto macular tissue of an eye for which macular pigment levels are to be measured. Emitted light is then collected from the macular tissue. The collected light is filtered so that the collected light includes lipofuscin emission from the macular tissue at an excitation wavelength that lies outside the macular pigment absorption range and outside the excitation range of interfering fluorophores. The collected light is quantified at each of a plurality of locations in the macular tissue and the macular pigment levels in the macular tissue are determined from the differing lipofuscin emission intensities in the macula and peripheral retina.
    Type: Application
    Filed: December 9, 2011
    Publication date: April 5, 2012
    Applicant: The University of Utah Research Foundation
    Inventors: Werner Gellerman, Mohsen Sharifzadeh
  • Patent number: 7914147
    Abstract: A method for optical detection of lipofuscin concentrations in the retina is described. A subject's eye is exposed to a light source. Light emitted from the subject's eye is detected. Levels of lipofuscin are determined from the emitted light. A system for optical detection of lipofuscin in the retina is described. The system includes a light source to generate light. The system includes an optical detector in optical communication with the light source. The optical detector is configured to detect light emitted from a subject's eye. A computing device in electronic communication with the optical detector is included in the system to determine levels of lipofuscin from the emitted light.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: March 29, 2011
    Assignee: Image Technologies Corporation
    Inventors: Mohsen Sharifzadeh, Werner Gellermann
  • Publication number: 20100179435
    Abstract: Methods and apparatus are disclosed which facilitate the rapid, noninvasive and quantitative measurement of the concentration of flavonoid compounds, as well as their isomers and metabolites, in biological tissue such as human skin. Low-intensity, visible-light illumination of intact tissue provides for high spatial resolution, and allows for precise quantification of the flavonoid levels in the tissue. The preferred embodiments malce use of a previously unknown, low-oscillator strength, optical absorption transition of flavonoids. This malces it possible to optically excite flavonoids in living human tissue outside the absorption range of other, potentially confounding skin chromophores.
    Type: Application
    Filed: January 13, 2009
    Publication date: July 15, 2010
    Inventors: Mohsen Sharifzadeh, Igor V. Ermakov, Werner Gellermann
  • Publication number: 20100049057
    Abstract: Macular pigments are measured by spectrally selective lipofuscin detection. Light from a light source that emits light at a selected range of wavelengths that overlap the absorption band of macular carotenoids is directed onto macular tissue of an eye for which macular pigment levels are to be measured. Emitted light is then collected from the macular tissue. The collected light is filtered so that the collected light includes lipofuscin emission from the macular tissue at an excitation wavelength that lies outside the macular pigment absorption range and outside the excitation range of interfering fluorophores. The collected light is quantified at each of a plurality of locations in the macular tissue and the macular pigment levels in the macular tissue are determined from the differing lipofuscin emission intensities in the macula and peripheral retina.
    Type: Application
    Filed: April 15, 2009
    Publication date: February 25, 2010
    Applicant: UNIVERSITY OF UTAH RESEARCH FOUNDATION
    Inventors: Werner Gellerman, Mohsen Sharifzadeh
  • Publication number: 20090244484
    Abstract: A method for optical detection of lipofuscin concentrations in the retina is described. A subject's eye is exposed to a light source. Light emitted from the subject's eye is detected. Levels of lipofuscin are determined from the emitted light. A system for optical detection of lipofuscin in the retina is described. The system includes a light source to generate light. The system includes an optical detector in optical communication with the light source. The optical detector is configured to detect light emitted from a subject's eye. A computing device in electronic communication with the optical detector is included in the system to determine levels of lipofuscin from the emitted light.
    Type: Application
    Filed: March 26, 2008
    Publication date: October 1, 2009
    Applicant: Gluta Scan, Inc.
    Inventors: Mohsen Sharifzadeh, Werner Gellermann
  • Publication number: 20060134004
    Abstract: Methods and apparatus are provided for the noninvasive detection and measurement of macular pigments such as carotenoids in macular tissue. In one technique, lipoftiscin autofluorescence spectroscopy is utilized for macular pigment measurements. In autofluorescence spectroscopy, the emission of lipoftiscin is excited at two wavelengths: one wavelength that overlaps both the macular pigment and lipofuscin absorption and another wavelength that lies outside the macular pigment absorption range but that still excites the lipofuscin emission. The macular pigment absorption is then derived from the different lipoftiscin emission intensities in the macula and peripheral retina. In another technique, both autofluorescence spectroscopy, as described above, and resonance Raman spectroscopy are used to identify and quantify the presence of carotenoids in macular tissue. In using resonance Raman spectroscopy, laser light is directed onto the eye tissue and the scattered light is then spectrally filtered and detected.
    Type: Application
    Filed: December 21, 2004
    Publication date: June 22, 2006
    Inventors: Werner Gellermann, Mohsen Sharifzadeh, Igor Ermakov, Paul Bernstein