Patents by Inventor Moinuddin Ahmed

Moinuddin Ahmed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130004378
    Abstract: This application provides a process unit for the production of alkylate gasoline, comprising: a) a nozzle having an orifice that dispenses one or more recirculated streams comprising ionic liquid catalyst into a chamber in the nozzle, b) a conduit for introducing a hydrocarbon feed stream comprising an olefin to the orifice at a close distance from the orifice; and c) a throat connecting the chamber in the nozzle to an alkylation zone. The process unit can have multiple Venturi nozzles.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Kyu Chang
  • Patent number: 8088338
    Abstract: Disclosed are a system and an apparatus for regenerating an ionic liquid catalyst, which has been deactivated by conjunct polymers during any type of reaction producing conjunct polymers as a by-product, for example, isoparaffin-olefin alkylation. The system and apparatus are designed such that solvent extraction of conjunct polymers, freed from the ionic liquid catalyst through its reaction with aluminum metal, occurs as soon as the conjunct polymers de-bond from the ionic liquid catalyst.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: January 3, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Kyu Chang
  • Publication number: 20110297618
    Abstract: A process for the filtration of an ionic liquid involves feeding an ionic liquid containing precipitated metal halides to a first filtering zone, which includes at least one first filter, to provide a partially filtered product. The process further includes subsequently feeding the partially filtered product to a second filtering zone, which includes at least one second filter having a smaller pore size than the at least one first filter, to provide a filtered product. A filter system capable of filtering precipitated metal halides from ionic liquid is also disclosed.
    Type: Application
    Filed: August 17, 2011
    Publication date: December 8, 2011
    Applicant: CHEVRON U.S.A. INC.
    Inventors: Huping LUO, Moinuddin AHMED, Kris PARIMI, Bong-Kyu CHANG, Sara LINDSAY
  • Patent number: 8067656
    Abstract: A process for separating an ionic liquid from hydrocarbons employs a coalescer material having a stronger affinity for the ionic liquid than the hydrocarbons. The coalescer material can be a high surface area material having a large amount of contact area to which ionic liquid droplets dispersed in the hydrocarbons may adhere. The process includes feeding a mixture comprising ionic liquid droplets dispersed in hydrocarbons to a coalescer comprising the coalescer material. The process further includes a capture step involving adhering at least a portion of the ionic liquid droplets to the coalescer material to provide captured droplets and a coalescing step involving coalescing captured droplets into coalesced droplets. After the capture and coalescence steps, the coalesced droplets are allowed to fall from the coalescer material to separate the ionic liquid from the hydrocarbons and provide a hydrocarbon effluent.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: November 29, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Kyu Chang
  • Publication number: 20110282114
    Abstract: This application provides a process for the production of alkylate blending components, comprising introducing a hydrocarbon feed stream comprising an olefin to an orifice of a nozzle, at a close distance from the orifice; and wherein the nozzle dispenses a mixture of one or more recirculated streams and the hydrocarbon feed stream through a throat of the nozzle to make alkylate gasoline blending components. This application also provides a process unit for the production of alkylate gasoline, comprising: a) a nozzle having an orifice that dispenses one or more recirculated streams comprising ionic liquid catalyst into a chamber in the nozzle, b) a conduit for introducing a hydrocarbon feed stream comprising an olefin to the orifice at a close distance from the orifice; and c) a throat connecting the chamber in the nozzle to an alkylation zone.
    Type: Application
    Filed: May 14, 2010
    Publication date: November 17, 2011
    Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Kyu Chang
  • Patent number: 7955999
    Abstract: Disclosed are a system and an apparatus for regenerating an ionic liquid catalyst, which has been deactivated by conjunct polymers during any type of reaction producing conjunct polymers as a by-product, for example, isoparaffin-olefin alkylation. The system and apparatus are designed such that solvent extraction of conjunct polymers, freed from the ionic liquid catalyst through its reaction with aluminum metal, occurs as soon as the conjunct polymers de-bond from the ionic liquid catalyst.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: June 7, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Kyu Chang
  • Publication number: 20100278699
    Abstract: An apparatus for regenerating an ionic liquid catalyst comprising a reactive extraction column, the reactive extraction column comprising: (a) an upper feed port, wherein a slurry of an ionic liquid catalyst and an aluminum metal enter the reactive extraction column; (b) a lower feed port, wherein a solvent and optionally a hydrogen gas enter the reactive extraction column; (c) a moveable bed comprised of the aluminum metal between the upper and lower feed ports, wherein the ionic liquid catalyst and the aluminum metal reacts to free conjunct polymers from the ionic liquid catalyst and some of the freed conjunct polymers are extracted from the ionic liquid catalyst by the solvent to provide regenerated ionic liquid catalyst; (d) a lower exit port, wherein the regenerated ionic liquid catalyst exits the reactive extraction column; and (e) an upper exit port, wherein the solvent and freed conjunct polymers exit the reactive extraction column.
    Type: Application
    Filed: March 17, 2010
    Publication date: November 4, 2010
    Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Kyu Chang
  • Publication number: 20100172806
    Abstract: Disclosed are a system and an apparatus for regenerating an ionic liquid catalyst, which has been deactivated by conjunct polymers during any type of reaction producing conjunct polymers as a by-product, for example, isoparaffin-olefin alkylation. The system and apparatus are designed such that solvent extraction of conjunct polymers, freed from the ionic liquid catalyst through its reaction with aluminum metal, occurs as soon as the conjunct polymers de-bond from the ionic liquid catalyst.
    Type: Application
    Filed: March 18, 2010
    Publication date: July 8, 2010
    Applicant: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Hyu Chang
  • Patent number: 7732364
    Abstract: A regeneration process for re-activating an ionic liquid catalyst, which is useful in a variety of reactions, especially alkylation reactions, and which has been deactivated by conjunct polymers. The process includes a reaction step and a solvent extraction step. The process comprises (a) providing the ionic liquid catalyst, wherein at least a portion of the ionic liquid catalyst is bound to conjunct polymers; and (b) reacting the ionic liquid catalyst with aluminum metal to free the conjunct polymers from the ionic liquid catalyst in a stirred reactor or a fixed reactor. The conjunct polymer is then separated from the catalyst phase by solvent extraction in a stirred extraction or packed column.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: June 8, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bong-Kyu Chang, Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Saleh Elomari
  • Publication number: 20100130799
    Abstract: Disclosed herein are processes in which precipitation permits removal of metal halides (e.g. AlCl3) from ionic liquids. After precipitation, the precipitated metal halides can be physically separated from the bulk ionic liquid. More effective precipitation can be achieved through cooling or the combination of cooling and the provision of metal halide seed crystals. The ionic liquids can be regenerated ionic liquid catalysts, which contain excess metal halides after regeneration. Upon removal of the excess metal halides, they can be reused in processes using ionic liquid catalysts, such as alkylation processes.
    Type: Application
    Filed: November 26, 2008
    Publication date: May 27, 2010
    Applicant: Chevron U.S.A. Inc.
    Inventors: Moinuddin Ahmed, Huping Luo, Krishniah Parimi, Bong-Kyu Chang, Sara Lindsay
  • Publication number: 20100126948
    Abstract: A process for the filtration of an ionic liquid involves feeding an ionic liquid containing precipitated metal halides to a first filtering zone, which includes at least one first filter, to provide a partially filtered product. The process further includes subsequently feeding the partially filtered product to a second filtering zone, which includes at least one second filter having a smaller pore size than the at least one first filter, to provide a filtered product. A filter system capable of filtering precipitated metal halides from ionic liquid is also disclosed.
    Type: Application
    Filed: November 26, 2008
    Publication date: May 27, 2010
    Applicant: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Moinuddin Ahmed, Kris Parimi, Bong-Kyu Chang, Sara Lindsay
  • Publication number: 20100130800
    Abstract: A process for separating an ionic liquid from hydrocarbons employs a coalescer material having a stronger affinity for the ionic liquid than the hydrocarbons. The coalescer material can be a high surface area material having a large amount of contact area to which ionic liquid droplets dispersed in the hydrocarbons may adhere. The process includes feeding a mixture comprising ionic liquid droplets dispersed in hydrocarbons to a coalescer comprising the coalescer material. The process further includes a capture step involving adhering at least a portion of the ionic liquid droplets to the coalescer material to provide captured droplets and a coalescing step involving coalescing captured droplets into coalesced droplets. After the capture and coalescence steps, the coalesced droplets are allowed to fall from the coalescer material to separate the ionic liquid from the hydrocarbons and provide a hydrocarbon effluent.
    Type: Application
    Filed: November 26, 2008
    Publication date: May 27, 2010
    Applicant: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Kyu Chang
  • Publication number: 20090170688
    Abstract: A regeneration process for re-activating an ionic liquid catalyst, which is useful in a variety of reactions, especially alkylation reactions, and which has been deactivated by conjunct polymers. The process includes a reaction step and a solvent extraction step. The process comprises (a) providing the ionic liquid catalyst, wherein at least a portion of the ionic liquid catalyst is bound to conjunct polymers; and (b) reacting the ionic liquid catalyst with aluminum metal to free the conjunct polymers from the ionic liquid catalyst in a stirred reactor or a fixed reactor. The conjunct polymer is then separated from the catalyst phase by solvent extraction in a stirred extraction or packed column.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 2, 2009
    Applicant: Chevron U.S.A. Inc.
    Inventors: Bong-Kyu Chang, Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Saleh Elomari
  • Publication number: 20090170687
    Abstract: Disclosed are a system and an apparatus for regenerating an ionic liquid catalyst, which has been deactivated by conjunct polymers during any type of reaction producing conjunct polymers as a by-product, for example, isoparaffin-olefin alkylation. The system and apparatus are designed such that solvent extraction of conjunct polymers, freed from the ionic liquid catalyst through its reaction with aluminum metal, occurs as soon as the conjunct polymers de-bond from the ionic liquid catalyst.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 2, 2009
    Applicant: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Kyu Chang
  • Publication number: 20090171133
    Abstract: Provided is a process for producing low volatility, high quality gasoline blending components which comprises recirculation of at least a portion of a recovered stream comprising primarily isoparaffins. Recirculation of the stream allows for an enhanced I/O ratio and a more cost effective process.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 2, 2009
    Applicant: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Abdenour Kemoun, Krishniah Parimi, Moinuddin Ahmed, Bong-Kyu Chang, Hye-Kyung Timken
  • Publication number: 20080046703
    Abstract: A memory storage structure includes a memory storage device, and a first meta-structure having a first size and operating at a first speed. The first speed is faster than a second speed for storing meta-information based on information stored in a memory. A second meta-structure is hierarchically associated with the first meta-structure. The second meta-structure has a second size larger than the first size and operates at the second speed such that faster and more accurate prefetching is provided by coaction of the first and second meta-structures. A method is provided to assemble the meta-information in the first meta-structure and copy this information to the second meta-structure, and prefetching the stored information from the second meta-structure to the first meta-structure ahead of its use.
    Type: Application
    Filed: October 25, 2007
    Publication date: February 21, 2008
    Inventors: Philip Emma, Allan Hartstein, Brian Prasky, Thomas Puzak, Moinuddin Ahmed Qureshi, Vijayalakshmi Srinivasan
  • Publication number: 20050120193
    Abstract: A memory storage structure includes a memory storage device, and a first meta-structure having a first size and operating at a first speed. The first speed is faster than a second speed for storing meta-information based on information stored in a memory. A second meta-structure is hierarchically associated with the first meta-structure. The second meta-structure has a second size larger than the first size and operates at the second speed such that faster and more accurate prefetching is provided by coaction of the first and second meta-structures. A method is provided to assemble the meta-information in the first meta-structure and copy this information to the second meta-structure, and prefetching the stored information from the second meta-structure to the first meta-structure ahead of its use.
    Type: Application
    Filed: December 1, 2003
    Publication date: June 2, 2005
    Inventors: Philip Emma, Allan Hartstein, Brian Prasky, Thomas Puzak, Moinuddin Ahmed Qureshi, Vijayalakshmi Srinivasan
  • Patent number: 4847418
    Abstract: A continuous process is provided for preparing alkanolamines having a high yield of monoalkanolamine, which comprises continuously reacting a flowing stream of a homogeneous mixture of an alkylene oxide having from two to four carbon atoms and ammonia in a molar ratio of ammonia to alkylene oxide within the range from about 15:1 to about 50:1 at temperatures above the critical temperature of the mixture and at pressures above the critical pressure of the mixture and maintaining the mixture in a single phase having a density of at least 15 lbs./cu.ft. for the time necessary to form an alkanolamine product mixture containing at least about 65% by weight monoalkanolamine.
    Type: Grant
    Filed: May 16, 1988
    Date of Patent: July 11, 1989
    Assignee: Union Carbide Corporation
    Inventors: Charles A. Gibson, Moinuddin Ahmed, James R. Nelson
  • Patent number: 4845296
    Abstract: A process is provided for preparing alkanolamines having a high yield of monoalkanolamine which comprises reacting in a reaction mixture an alkylene oxide having from two to four carbon atoms with ammonia in a molar ratio of ammonia to alkylene oxide within the range from about 15.1 to about 50.1 at temperatures above the critical temperature of the reaction mixture and at pressures above the critical pressure of the reaction mixture and high enough to maintain the reaction mixture at sufficiently high fluid densities.
    Type: Grant
    Filed: May 12, 1988
    Date of Patent: July 4, 1989
    Assignee: Union Carbide Corporation
    Inventors: Moinuddin Ahmed, James R. Nelson, Charles A. Gibson
  • Patent number: 4381223
    Abstract: This invention provides for the separation of an amine composition undergoing processing at high temperatures and pressures which amine composition contains volatile components and less volatile components where the volatile components are desirable for further processing and/or utilization and the less volatile components are less desirable for further processing and/or utilization. The separation serves to divide the amine composition into two streams, one which is enriched in the volatile components and the other which is enriched in the less volatile components.
    Type: Grant
    Filed: September 30, 1981
    Date of Patent: April 26, 1983
    Assignee: Union Carbide Corporation
    Inventors: Charles A. Gibson, Moinuddin Ahmed, Michael Habenschuss