Patents by Inventor Mojgan Nejad

Mojgan Nejad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240132764
    Abstract: The disclosure relates to adhesive compositions, including non-crosslinked resins and crosslinked/cured adhesives joining substrates, as well as related methods for making the compositions and articles. Compared to a conventional phenol (P) and formaldehyde (F) resin, the disclosed methods and compositions use lignin (L), formaldehyde (F), and optionally higher aldehydes (A) as corresponding replacements to provide an analog to a conventional PF resin with biobased reactants. Due to the differing reactivity of the LF components compared to the PF components, the initial condensation reaction between ortho-reactive sites in the lignin and the aldehyde is controlled to prevent gelation of the aqueous reaction mixture while reacting substantially all of the LF reactants to provide a non-crosslinked resin reaction product. The resin reaction product can then be cured at high temperature/high pressure conditions to provide a crosslinked adhesive, for example joining two substrates.
    Type: Application
    Filed: February 4, 2022
    Publication date: April 25, 2024
    Inventors: Mojgan Nejad, Mohsen Siahkamari
  • Patent number: 11958672
    Abstract: The disclosed articles, apparatus, methods, and compositions provide for the integration of different and environmentally-friendly processes for extraction, stabilization, and formulation of active compounds with health and/or other benefits from lignocellulosic by-products of food processes. The active compounds can include one or more of polyphenols, flavonoids, o-diphenols, anthocyanins, and phenolic acids. A high-pressure, high-temperature extraction process provides a means to recover a substantial portion of the active compounds from a biomass feedstock. The corresponding extract can be encapsulated, which provides a convenient form for stabilization and delivery of the active compounds into a final product, for example an active packaging material or corresponding actively packaged food item.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: April 16, 2024
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Bahar Aliakbarian, Mojgan Nejad
  • Publication number: 20230077582
    Abstract: The disclosed articles, apparatus, methods, and compositions provide for the integration of different and environmentally-friendly processes for extraction, stabilization, and formulation of active compounds with health and/or other benefits from lignocellulosic by-products of food processes. The active compounds can include one or more of polyphenols, flavonoids, o-diphenols, anthocyanins, and phenolic acids. A high-pressure, high-temperature extraction process provides a means to recover a substantial portion of the active compounds from a biomass feedstock. The corresponding extract can be encapsulated, which provides a convenient form for stabilization and delivery of the active compounds into a final product, for example an active packaging material or corresponding actively packaged food item.
    Type: Application
    Filed: September 30, 2022
    Publication date: March 16, 2023
    Inventors: Bahar Aliakbarian, Mojgan Nejad
  • Publication number: 20230056241
    Abstract: The disclosure relates to adhesive compositions, including non-crosslinked resins and crosslinked/cured adhesives joining substrates, as well as related methods for making the compositions and articles. Compared to a conventional phenol (P) and formaldehyde (F) resin, the disclosed methods and compositions use lignin (L) and higher aldehydes (A) as corresponding replacements to provide an analog to a conventional PF resin with biobased reactants. Due to the differing reactivity of the LA components compared to the PF components, the initial condensation reaction between ortho-reactive sites in the lignin and the aldehyde is controlled to prevent gelation of the aqueous reaction mixture while reacting substantially all of the LA reactants to provide a non-crosslinked resin reaction product. The resin reaction product can then be cured at high temperature/high pressure conditions to provide a crosslinked adhesive, for example joining two substrates.
    Type: Application
    Filed: January 22, 2021
    Publication date: February 23, 2023
    Inventors: Mojgan Nejad, Sasha Bell, Mohsen Siahkamari
  • Patent number: 11485554
    Abstract: The disclosed articles, apparatus, methods, and compositions provide for the integration of different and environmentally-friendly processes for extraction, stabilization, and formulation of active compounds with health and/or other benefits from lignocellulosic by-products of food processes. The active compounds can include one or more of polyphenols, flavonoids, o-diphenols, anthocyanins, and phenolic acids. A high-pressure, high-temperature extraction process provides a means to recover a substantial portion of the active compounds from a biomass feedstock. The corresponding extract can be encapsulated, which provides a convenient form for stabilization and delivery of the active compounds into a final product, for example an active packaging material or corresponding actively packaged food item.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: November 1, 2022
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Bahar Aliakbarian, Mojgan Nejad
  • Publication number: 20220195211
    Abstract: The disclosure relates to encapsulated UV (ultraviolet) stabilizer/absorber nanoparticles, which nanoparticles limit or prevent the migration of UV stabilizers/absorbers to the surface of a coating in service and/or which otherwise preserve the UV-resistance properties of the UV stabilizer for a longer period once incorporated into a UV-protective coating. The nanoparticles each include a clay or other nanotube encapsulating body such as a halloysite nanotube (HNT) and a UV stabilizing material within the interior cylindrical volume of the nanotube encapsulating body. The UV stabilizing/absorbing material can include one or more of lignin, a biomass extractive, a phenolic biomass material, and an organic UV stabilizer. The encapsulated UV stabilizer nanoparticles can be incorporated into a polymer composite as a heterogeneous phase distributed throughout a continuous polymer matrix. The polymer composite can be applied as a coating or film to an underlying substrate to form a corresponding coated article.
    Type: Application
    Filed: April 23, 2020
    Publication date: June 23, 2022
    Inventors: Mojgan Nejad, Saeid Nikafshar
  • Publication number: 20220064363
    Abstract: The disclosure relates to a polyurethane prepolymer and corresponding crosslinked network polymer incorporating lignin as a natural polyol in the polyurethane system. The polyurethane prepolymer includes a reaction product between an isocyanate, lignin, and a cyclic alkyl carbonate. The reaction product includes (i) free isocyanate groups and/or free hydroxyl groups, (ii) urethane linking groups between residues of lignin aliphatic hydroxyl groups and the isocyanate, (iii) ester linking groups between residues of lignin aromatic hydroxyl groups and a ring-opened form of the cyclic alkyl carbonate, and (iv) optionally urethane linking groups between residues of the ring-opened cyclic alkyl carbonate and the isocyanate. The polyurethane polymer can be a networked, crosslinked polymerization product of the prepolymer reaction product, for example in combination with a lignin curing agent. The polyurethane polymer can be used as a coating on a substrate, an adhesive joining multiple substrates, etc.
    Type: Application
    Filed: June 14, 2019
    Publication date: March 3, 2022
    Inventors: Mojgan Nejad, Saeid Nikafahar
  • Publication number: 20200270039
    Abstract: The disclosed articles, apparatus, methods, and compositions provide for the integration of different and environmentally-friendly processes for extraction, stabilization, and formulation of active compounds with health and/or other benefits from lignocellulosic by-products of food processes. The active compounds can include one or more of polyphenols, flavonoids, o-diphenols, anthocyanins, and phenolic acids. A high-pressure, high-temperature extraction process provides a means to recover a substantial portion of the active compounds from a biomass feedstock. The corresponding extract can be encapsulated, which provides a convenient form for stabilization and delivery of the active compounds into a final product, for example an active packaging material or corresponding actively packaged food item.
    Type: Application
    Filed: February 20, 2020
    Publication date: August 27, 2020
    Inventors: Bahar Aliakbarian, Mojgan Nejad