Patents by Inventor Monuko Du Plessis

Monuko Du Plessis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9515227
    Abstract: A light emitting device (10) comprises a body (12) of a semiconductor material having a first face (14) and at least one other face (16). At least one pn-junction (18) in the body is located towards the first face and is configured to be driven via contacts on the body into a light emitting mode. The other face (16) of the body is configured to transmit from the body light emitted by the at least one pn-junction (18) in the near infrared part of the spectrum and having wavelengths longer than 1 ?m.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: December 6, 2016
    Assignee: INSIAVA (PTY) LIMITED
    Inventors: Monuko Du Plessis, Alfons Willi Bogalecki
  • Patent number: 9306113
    Abstract: A light emitting device comprises a body of an indirect bandgap semiconductor material. A junction region is formed between a first region in the body of a first doping kind and a second region of the body of a second doping kind of first concentration. A third region of the second doping kind of a second concentration is spaced from the junction region by the second region. The second concentration is higher than the first concentration. A terminal arrangement is connected to the body for, in use, reverse biasing the first junction region into a breakdown mode, thereby to cause emission of light. The device is configured such that a depletion region associated with the junction region reaches through the shaped region to reach the third region, before the junction enters the breakdown mode.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: April 5, 2016
    Assignee: INSIAVA (PTY) LIMITED
    Inventor: Monuko Du Plessis
  • Patent number: 8969112
    Abstract: An optoelectronic device comprises a body of an indirect bandgap semiconductor material having a surface and a photon active region on one side of the surface. A light directing arrangement is formed integrally with the body on an opposite side of the surface.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: March 3, 2015
    Assignee: Insiava (Pty) Limited
    Inventors: Monuko Du Plessis, Ray Frederick Greyvenstein, Alfons Willi Bogalecki
  • Publication number: 20140248728
    Abstract: An optoelectronic device comprises a body of an indirect bandgap semiconductor material having a surface and a photon active region on one side of the surface. A light directing arrangement is formed integrally with the body on an opposite side of the surface.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: INSIAVA (PTY) LIMITED
    Inventors: MONUKO DU PLESSIS, Ray Frederick Greyvenstein, Alfons Willi Bogalecki
  • Publication number: 20140231678
    Abstract: A light emitting device (10) comprises a body (12) of a semiconductor material having a first face (14) and at least one other face (16). At least one pn-junction (18) in the body is located towards the first face and is configured to be driven via contacts on the body into a light emitting mode. The other face (16) of the body is configured to transmit from the body light emitted by the at least one pn-junction (18) in the near infrared part of the spectrum and having wavelengths longer than 1 ?m.
    Type: Application
    Filed: September 12, 2012
    Publication date: August 21, 2014
    Applicant: INSIAVA (PTY) LIMITED
    Inventors: Monuko Du Plessis, Alfons Willi Bogalecki
  • Patent number: 8759845
    Abstract: A light emitting device (10) comprises a body (12) of a semiconductor material. A first junction region (14) is formed in the body between a first region (12.1) of the body of a first doping kind and a second region (12.2) of the body of a second doping kind. A second junction region (16) is formed in the body between the second region (12.2) of the body and a third region (12.3) of the body of the first doping kind. A terminal arrangement (18) is connected to the body for, in use, reverse biasing the first junction region (14) into a breakdown mode and for forward biasing at least part (16.1) of the second junction region (16), to inject carriers towards the first junction region (14). The device (10) is configured so that a first depletion region (20) associated with the reverse biased first junction region (14) punches through to a second depletion region associated with the forward biased second junction region (16).
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: June 24, 2014
    Assignee: Insiava (Pty) Limited
    Inventors: Lukas Willem Snyman, Monuko Du Plessis
  • Patent number: 8729582
    Abstract: An optoelectronic device (20) comprises a body (14) of an indirect bandgap semiconductor material having a surface (16) and a photon active region (12) on one side of the surface. A fight directing arrangement (22) is formed integrally with the body on an opposite side of the surface.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: May 20, 2014
    Assignee: Insiava (Pty) Limited
    Inventors: Monuko Du Plessis, Ray Frederick Greyvenstein, Alfons Willi Bogalecki
  • Patent number: 8674382
    Abstract: A semiconductor light emitting device (10) comprises a semiconductor structure (12) comprising a first body (14) of a first semiconductor material (in this case Ge) comprising a first region of a first doping kind (in this case n) and a second body (18) of a second semiconductor material (in this case Si) comprising a first region of a second doping kind (in this case p). The structure comprises a junction region (15) comprising a first heterojunction (16) formed between the first body (14) and the second body (18) and a pn junction (17) formed between regions of the structure of the first and second doping kinds respectively. A biasing arrangement (20) is connected to the structure for, in use, reverse biasing the pn junction, thereby to cause emission of light.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: March 18, 2014
    Assignee: Insiava (Pty) Limited
    Inventors: Lukas Willem Snyman, Monuko Du Plessis
  • Patent number: 8669564
    Abstract: A light emitting device (10) comprises an elongate first body (12) of a semiconductor material. A transverse junction (18) is formed in the first body between a first n+-type region (12.1) of the first body and a second p-type region (12.2). A third p+-type region (12.3) is spaced from the first region by the second region. A second body (22) of an isolation material is provided immediately adjacent at least part of the second region to at least partially encapsulate the first body. A terminal arrangement (28) is connected to the first body and is arranged to reverse bias the junction (18) into a breakdown mode. The device is configured such that a depletion region associated with the junction (18) extends through the second region (12.2) and reaches the third region (12.3) before the junction (18) enters the breakdown mode.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: March 11, 2014
    Assignee: Insiava (Pty) Limited
    Inventor: Monuko Du Plessis
  • Patent number: 8395226
    Abstract: An electro-optical device 10 comprises a body 12 of a semiconductor material, such as silicon. A light source 14 is formed integrally in the body. The device comprises an associated light detector 16 and an optical path providing part 19 having a refractive index and extending between the light source 14 and the detector 16, to provide an optical path 18 having a path length. A sensor 20 cooperates with the optical path providing part 19 and is configured to modulate light emitted by the light source 14, by changing at least one of light absorption characteristics in the optical path by exposing a medium in the optical path to the emitted light, the path length and the refractive index.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: March 12, 2013
    Assignee: Insiava (Pty) Limited
    Inventors: Monuko Du Plessis, Lukas Willem Snyman
  • Patent number: 8362679
    Abstract: A light emitting device (10) comprises a first body (12) of an indirect bandgap semiconductor material. A first junction region (18) in the body is formed between a first region (12.1) of the body of a first doping kind and a second region (12.2) of the body of a second doping kind. A second junction (20) region in the body is formed between the second region of the body and a third region of the body of the first doping kind. The first and second junction regions being spaced from one another by not further than a minority carrier diffusion length. A terminal arrangement is connected to the first, second and third regions of the body for, in use, reverse biasing the first junction region into avalanche or field emission mode and for forward biasing the second junction region to inject carriers into the first junction region. A second body (22) of an isolation material is located immediately adjacent at least one wall of the third region, thereby to reduce parasitic injection from the third region.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: January 29, 2013
    Assignee: Insiava (Pty) Limited
    Inventor: Monuko Du Plessis
  • Publication number: 20120175642
    Abstract: An electro-optical device 10 comprises a body 12 of a semiconductor material, such as silicon. A light source 14 is formed integrally in the body. The device comprises an associated light detector 16 and an optical path providing part 19 having a refractive index and extending between the light source 14 and the detector 16, to provide an optical path 18 having a path length. A sensor 20 cooperates with the optical path providing part 19 and is configured to modulate light emitted by the light source 14, by changing at least one of light absorption characteristics in the optical path by exposing a medium in the optical path to the emitted light, the path length and the refractive index.
    Type: Application
    Filed: January 27, 2010
    Publication date: July 12, 2012
    Inventors: Monuko Du Plessis, Lukas Snyman Willem
  • Publication number: 20120009709
    Abstract: A light emitting device comprises a body of an indirect bandgap semiconductor material. A junction region is formed between a first region in the body of a first doping kind and a second region of the body of a second doping kind of first concentration. A third region of the second doping kind of a second concentration is spaced from the junction region by the second region. The second concentration is higher than the first concentration. A terminal arrangement is connected to the body for, in use, reverse biasing the first junction region into a breakdown mode, thereby to cause emission of light. The device is configured such that a is depletion region associated with the junction region reaches the, before the junction enters the breakdown mode.
    Type: Application
    Filed: June 15, 2011
    Publication date: January 12, 2012
    Inventor: Monuko DU PLESSIS
  • Publication number: 20120001681
    Abstract: A light emitting device (10) comprises an elongate first body (12) of a semiconductor material. A transverse junction (18) is formed in the first body between a first n+-type region (12.1) of the first body and a second p-type region (12.2). A third p+-type region (12.3) is spaced from the first region by the second region. A second body (22) of an isolation material is provided immediately adjacent at least part of the second region to at least partially encapsulate the first body. A terminal arrangement (28) is connected to the first body and is arranged to reverse bias the junction (18) into a breakdown mode. The device is configured such that a depletion region associated with the junction (18) extends through the second region (12.2) and reaches the third region (12.3) before the junction (18) enters the breakdown mode.
    Type: Application
    Filed: November 26, 2009
    Publication date: January 5, 2012
    Inventor: Monuko Du Plessis
  • Publication number: 20110068716
    Abstract: A semiconductor light emitting device (10) comprises a semiconductor structure (12) comprising a first body (14) of a first semiconductor material (in this case Ge) comprising a first region of a first doping kind (in this case n) and a second body (18) of a second semiconductor material (in this case Si) comprising a first region of a second doping kind (in this case p). The structure comprises a junction region (15) comprising a first heterojunction (16) formed between the first body (14) and the second body (18) and a pn junction (17) formed between regions of the structure of the first and second doping kinds respectively. A biasing arrangement (20) is connected to the structure for, in use, reverse biasing the pn junction, thereby to cause emission of light.
    Type: Application
    Filed: January 30, 2009
    Publication date: March 24, 2011
    Inventors: Lukas Willem Snyman, Monuko Du Plessis
  • Publication number: 20110042701
    Abstract: An optoelectronic device (20) comprises a body (14) of an indirect bandgap semiconductor material having a surface (16) and a photon active region (12) on one side of the surface. A fight directing arrangement (22) is formed integrally with the body on an opposite side of the surface.
    Type: Application
    Filed: October 31, 2008
    Publication date: February 24, 2011
    Inventors: Monuko Du Plessis, Ray Frederick Greyvenstein, Alfons Willi Bogalecki
  • Publication number: 20110031893
    Abstract: A light emitting device (10) comprises a body (12) of a semiconductor material. A first junction region (14) is formed in the body between a first region (12.1) of the body of a first doping kind and a second region (12.2) of the body of a second doping kind. A second junction region (16) is formed in the body between the second region (12.2) of the body and a third region (12.3) of the body of the first doping kind. A terminal arrangement (18) is connected to the body for, in use, reverse biasing the first junction region (14) into a breakdown mode and for forward biasing at least part (16.1) of the second junction region (16), to inject carriers towards the first junction region (14). The device (10) is configured so that a first depletion region (20) associated with the reverse biased first junction region (14) punches through to a second depletion region associated with the forward biased second junction region (16).
    Type: Application
    Filed: January 21, 2009
    Publication date: February 10, 2011
    Inventors: Lukas Willem Snyman, Monuko Du Plessis
  • Publication number: 20110012502
    Abstract: A light emitting device (10) comprises a first body (12) of an indirect bandgap semiconductor material. A first junction region (18) in the body is formed between a first region (12.1) of the body of a first doping kind and a second region (12.2) of the body of a second doping kind. A second junction (20) region in the body is formed between the second region of the body and a third region of the body of the first doping kind. The first and second junction regions being spaced from one another by not further than a minority carrier diffusion length. A terminal arrangement is connected to the first, second and third regions of the body for, in use, reverse biasing the first junction region into avalanche or field emission mode and for forward biasing the second junction region to inject carriers into the first junction region. A second body (22) of an isolation material is located immediately adjacent at least one wall of the third region, thereby to reduce parasitic injection from the third region.
    Type: Application
    Filed: October 8, 2008
    Publication date: January 20, 2011
    Inventor: Monuko Du Plessis
  • Patent number: 6028480
    Abstract: In a differential pair (P1, P2) actively loaded with a current mirror (N1, N2), a differential amplifier (A) drives the common terminal (Z) of the current mirror to force a zero voltage difference between the input terminal (X) and the output terminal (Y) of the current mirror. The voltage at the input terminal (X) is actively bootstrapped, via the differential amplifier (A), by the voltage of the output terminal (Y) with high precision. Thus a high voltage gain is obtained. A capacitor (CP) between the input terminal (X) and the control terminal (Z) compensates the local loop formed by the differential amplifier (A) and the input transistor (N1) of the current mirror, and forms a short circuit at high frequencies, thus reducing the active load of the differential pair to a conventional current mirror. For high frequencies the circuit has the same gain and phase properties as the standard non-bootstrapped approach and standard compensating techniques can be applied to the complete amplifier.
    Type: Grant
    Filed: May 19, 1997
    Date of Patent: February 22, 2000
    Assignee: U.S. Philips Corporation
    Inventors: Evert Seevinck, Monuko Du Plessis
  • Patent number: 5825236
    Abstract: A CMOS bias circuit capable of operating down to a supply voltage equal to the sum of the threshold voltage and the saturation voltage. It generates a threshold referenced bias voltage which is independent of the supply voltage. This bias voltage is equal to the gate source voltage of a transistor which supplies a current equal to the gate-source voltage of another transistor divided by the resistance of a feedback resistor. Via the feedback resistor, changes in the supply voltage cause counteracting changes in the gate-source voltages of the transistors, resulting in a bias voltage which is substantially constant with changing supply voltage.
    Type: Grant
    Filed: May 19, 1997
    Date of Patent: October 20, 1998
    Assignee: U.S. Philips Corporation
    Inventors: Evert Seevinck, Monuko Du Plessis