Patents by Inventor Mordechay Avrutsky

Mordechay Avrutsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230367349
    Abstract: Methods and systems for connecting a photovoltaic module and an inverter having an input capacitor are presented. The photovoltaic system includes a maximum power point tracking (MPPT) controller coupled between the inverter and the photovoltaic module. The MPPT controller includes a direct current (DC) converter configured to reduce, in a forward buck mode, a voltage of the photovoltaic module, to supply power from the photovoltaic module to the input capacitor of the inverter. The photovoltaic system also includes a microcontroller unit (MCU) configured to control the DC converter to allow the photovoltaic module to operate at a maximum power point, and to increase, in a reverse boost mode, a voltage of the input capacitor of the inverter, to dissipate power from the input capacitor in the photovoltaic module, and the MPPT controller is configured to, based upon one or more triggers.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 16, 2023
    Inventors: Daniel Eizips, Mordechay Avrutsky, Sergey Kondrashov
  • Patent number: 11720135
    Abstract: Methods and systems for connecting a photovoltaic module and an inverter having an input capacitor are presented. The photovoltaic system includes a maximum power point tracking (MPPT) controller coupled between the inverter and the photovoltaic module. The MPPT controller includes a direct current (DC) converter configured to reduce, in a forward buck mode, a voltage of the photovoltaic module, to supply power from the photovoltaic module to the input capacitor of the inverter. The photovoltaic system also includes a microcontroller unit (MCU) configured to control the DC converter to allow the photovoltaic module to operate at a maximum power point, and to increase, in a reverse boost mode, a voltage of the input capacitor of the inverter, to dissipate power from the input capacitor in the photovoltaic module, and the MPPT controller is configured to, based upon one or more triggers.
    Type: Grant
    Filed: August 11, 2022
    Date of Patent: August 8, 2023
    Assignee: Tigo Energy, Inc.
    Inventors: Daniel Eizips, Mordechay Avrutsky, Sergey Kondrashov
  • Publication number: 20220382313
    Abstract: Methods and systems for connecting a photovoltaic module and an inverter having an input capacitor are presented. The photovoltaic system includes a maximum power point tracking (MPPT) controller coupled between the inverter and the photovoltaic module. The MPPT controller includes a direct current (DC) converter configured to reduce, in a forward buck mode, a voltage of the photovoltaic module, to supply power from the photovoltaic module to the input capacitor of the inverter. The photovoltaic system also includes a microcontroller unit (MCU) configured to control the DC converter to allow the photovoltaic module to operate at a maximum power point, and to increase, in a reverse boost mode, a voltage of the input capacitor of the inverter, to dissipate power from the input capacitor in the photovoltaic module, and the MPPT controller is configured to, based upon one or more triggers.
    Type: Application
    Filed: August 11, 2022
    Publication date: December 1, 2022
    Inventors: Daniel Eizips, Mordechay Avrutsky, Sergey Kondrashov
  • Patent number: 11437820
    Abstract: Methods and systems for connecting a photovoltaic module and an inverter having an input capacitor are presented. The photovoltaic system includes a maximum power point tracking (MPPT) controller coupled between the inverter and the photovoltaic module. The MPPT controller includes a direct current (DC) converter configured to reduce, in a forward buck mode, a voltage of the photovoltaic module, to supply power from the photovoltaic module to the input capacitor of the inverter. The photovoltaic system also includes a microcontroller unit (MCU) configured to control the DC converter to allow the photovoltaic module to operate at a maximum power point, and to increase, in a reverse boost mode, a voltage of the input capacitor of the inverter, to dissipate power from the input capacitor in the photovoltaic module, and the MPPT controller is configured to, based upon one or more triggers.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: September 6, 2022
    Assignee: Tigo Energy, Inc.
    Inventors: Daniel Eizips, Mordechay Avrutsky, Sergey Kondrashov
  • Patent number: 11201494
    Abstract: Systems and methods for efficiently allowing current to bypass a group of solar cells having one or more malfunctioning or shaded solar cells without overwhelming a bypass diode. This can be done using a switch (e.g., a MOSFET) connected in parallel with the bypass diode. By turning the switch on and off, a majority of the bypass current can be routed through the switch, which is configured to handle larger currents than the bypass diode is designed for, leaving only a minority of the current to pass through the bypass diode.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: December 14, 2021
    Assignee: Tigo Energy, Inc.
    Inventor: Mordechay Avrutsky
  • Patent number: 11177769
    Abstract: A connection box for solar panels to enable the use of multiple types of passive and active covers for different functionalities in the junction box built into the panel to which the connection box is fixedly attached.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: November 16, 2021
    Assignee: Tigo Energy, Inc.
    Inventors: Zvi Alon, Ron Hadar, Mordechay Avrutsky
  • Patent number: 11171490
    Abstract: A cascading regulation system connected to a number of serially connected power sources and uses multiple regulators having different cutoff voltages to provide an output for the local power consumption unit. Each of the regulators is connected to a subset of serially connected power sources and so configured that if the voltage generated at the lowest tap is no longer sufficient for a stable supply to the local power consumption unit, the next higher regulator takes over, and the output voltage drops in small steps reflective of that takeover of the next higher tap. When the voltage generated across a subsection grows, a lower connected tap may take over again, producing a slightly higher output voltage for the local power consumption unit. The cutover steps are chosen such that the output voltage range matches the range given as the acceptable input range for the local power consumption unit.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: November 9, 2021
    Assignee: Tigo Energy, Inc.
    Inventors: Shmuel Arditi, Daniel Eizips, Mordechay Avrutsky
  • Publication number: 20200295569
    Abstract: A cascading regulation system connected to a number of serially connected power sources and uses multiple regulators having different cutoff voltages to provide an output for the local power consumption unit. Each of the regulators is connected to a subset of serially connected power sources and so configured that if the voltage generated at the lowest tap is no longer sufficient for a stable supply to the local power consumption unit, the next higher regulator takes over, and the output voltage drops in small steps reflective of that takeover of the next higher tap. When the voltage generated across a subsection grows, a lower connected tap may take over again, producing a slightly higher output voltage for the local power consumption unit. The cutover steps are chosen such that the output voltage range matches the range given as the acceptable input range for the local power consumption unit.
    Type: Application
    Filed: May 29, 2020
    Publication date: September 17, 2020
    Inventors: Shmuel Arditi, Daniel Eizips, Mordechay Avrutsky
  • Publication number: 20200235583
    Abstract: Methods and systems for connecting a photovoltaic module and an inverter having an input capacitor are presented. The photovoltaic system includes a maximum power point tracking (MPPT) controller coupled between the inverter and the photovoltaic module. The MPPT controller includes a direct current (DC) converter configured to reduce, in a forward buck mode, a voltage of the photovoltaic module, to supply power from the photovoltaic module to the input capacitor of the inverter. The photovoltaic system also includes a microcontroller unit (MCU) configured to control the DC converter to allow the photovoltaic module to operate at a maximum power point, and to increase, in a reverse boost mode, a voltage of the input capacitor of the inverter, to dissipate power from the input capacitor in the photovoltaic module, and the MPPT controller is configured to, based upon one or more triggers.
    Type: Application
    Filed: April 6, 2020
    Publication date: July 23, 2020
    Inventors: Daniel Eizips, Mordechay Avrutsky, Sergey Kondrashov
  • Patent number: 10673245
    Abstract: A cascading regulation system connected to a number of serially connected power sources and uses multiple regulators having different cutoff voltages to provide an output for the local power consumption unit. Each of the regulators is connected to a subset of serially connected power sources and so configured that if the voltage generated at the lowest tap is no longer sufficient for a stable supply to the local power consumption unit, the next higher regulator takes over, and the output voltage drops in small steps reflective of that takeover of the next higher tap. When the voltage generated across a subsection grows, a lower connected tap may take over again, producing a slightly higher output voltage for the local power consumption unit. The cutover steps are chosen such that the output voltage range matches the range given as the acceptable input range for the local power consumption unit.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: June 2, 2020
    Assignee: Tigo Energy, Inc.
    Inventors: Shmuel Arditi, Daniel Eizips, Mordechay Avrutsky
  • Patent number: 10615607
    Abstract: Methods and systems for connecting a photovoltaic module and an inverter having an input capacitor are presented. The photovoltaic system includes a maximum power point tracking (MPPT) controller coupled between the inverter and the photovoltaic module. The MPPT controller includes a direct current (DC) converter configured to reduce, in a forward buck mode, a voltage of the photovoltaic module, to supply power from the photovoltaic module to the input capacitor of the inverter. The photovoltaic system also includes a microcontroller unit (MCU) configured to control the DC converter to allow the photovoltaic module to operate at a maximum power point, and to increase, in a reverse boost mode, a voltage of the input capacitor of the inverter, to dissipate power from the input capacitor in the photovoltaic module, and the MPPT controller is configured to, based upon one or more triggers.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: April 7, 2020
    Assignee: Tigo Energy, Inc.
    Inventors: Daniel Eizips, Mordechay Avrutsky, Sergey Kondrashov
  • Patent number: 10461570
    Abstract: Systems and methods are herein disclosed for efficiently allowing current to bypass a group of solar cells having one or more malfunctioning or shaded solar cells without overwhelming a bypass diode. This can be done using a switch (e.g., a MOSFET) connected in parallel with the bypass diode. By turning the switch on and off, a majority of the bypass current can be routed through the switch, which is configured to handle larger currents than the bypass diode is designed for, leaving only a minority of the current to pass through the bypass diode.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: October 29, 2019
    Assignee: TIGO ENERGY, INC.
    Inventor: Mordechay Avrutsky
  • Patent number: 10454275
    Abstract: A system and method to collect energy from generation systems such as, for example, wind farms or solar farms with widely distributed energy-generation equipment. In some cases, static inverters are used to feed the energy directly into the power grid. In some other cases, back-to-back static inverters are used create a high-voltage DC transmission line to collect power from multiple generation sites into one feed-in site.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: October 22, 2019
    Assignee: TIGO ENERGY, INC.
    Inventors: Mordechay Avrutsky, Dan Kikinis
  • Patent number: 10333405
    Abstract: A power supply for use in a solar electric production system, including: a first stage having an input connected to a voltage from a photovoltaic panel and an output providing a first voltage different from the voltage from the photovoltaic panel; and a second stage connected to the output of the first stage, the second stage supplying power at a second voltage to a micro-controller, where the output of the first stage is turned on and stable for a period of time before the second stage is turned on to supply the power at the second voltage to the micro-controller.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: June 25, 2019
    Assignee: TIGO ENERGY, INC.
    Inventor: Mordechay Avrutsky
  • Publication number: 20190173422
    Abstract: A connection box for solar panels to enable the use of multiple types of passive and active covers for different functionalities in the junction box built into the panel to which the connection box is fixedly attached.
    Type: Application
    Filed: February 7, 2019
    Publication date: June 6, 2019
    Inventors: Zvi Alon, Ron Hadar, Mordechay Avrutsky
  • Patent number: 10218307
    Abstract: A connection box for solar panels to enable the use of multiple types of passive and active covers for different functionalities in the junction box built into the panel to which the connection box is fixedly attached.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: February 26, 2019
    Assignee: TIGO ENERGY, INC.
    Inventors: Zvi Alon, Ron Hadar, Mordechay Avrutsky
  • Publication number: 20190036376
    Abstract: Systems and methods for efficiently allowing current to bypass a group of solar cells having one or more malfunctioning or shaded solar cells without overwhelming a bypass diode. This can be done using a switch (e.g., a MOSFET) connected in parallel with the bypass diode. By turning the switch on and off, a majority of the bypass current can be routed through the switch, which is configured to handle larger currents than the bypass diode is designed for, leaving only a minority of the current to pass through the bypass diode.
    Type: Application
    Filed: October 5, 2018
    Publication date: January 31, 2019
    Inventor: Mordechay Avrutsky
  • Patent number: 10128683
    Abstract: Systems and methods for efficiently allowing current to bypass a group of solar cells having one or more malfunctioning or shaded solar cells without overwhelming a bypass diode. This can be done using a switch (e.g., a MOSFET) connected in parallel with the bypass diode. By turning the switch on and off, a majority of the bypass current can be routed through the switch, which is configured to handle larger currents than the bypass diode is designed for, leaving only a minority of the current to pass through the bypass diode.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: November 13, 2018
    Assignee: TIGO ENERGY, INC.
    Inventor: Mordechay Avrutsky
  • Publication number: 20180254701
    Abstract: A power supply for use in a solar electric production system, including: a first stage having an input connected to a voltage from a photovoltaic panel and an output providing a first voltage different from the voltage from the photovoltaic panel; and a second stage connected to the output of the first stage, the second stage supplying power at a second voltage to a micro-controller, where the output of the first stage is turned on and stable for a period of time before the second stage is turned on to supply the power at the second voltage to the micro-controller.
    Type: Application
    Filed: May 2, 2018
    Publication date: September 6, 2018
    Inventor: Mordechay AVRUTSKY
  • Publication number: 20180131191
    Abstract: A system and method to collect energy from generation systems such as, for example, wind farms or solar farms with widely distributed energy-generation equipment. In some cases, static inverters are used to feed the energy directly into the power grid. In some other cases, back-to-back static inverters are used create a high-voltage DC transmission line to collect power from multiple generation sites into one feed-in site.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 10, 2018
    Inventors: Mordechay AVRUTSKY, Dan Kikinis