Patents by Inventor Morgan Rudolph

Morgan Rudolph has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11813031
    Abstract: A system for delivering energy to a patient's body includes a plurality of probes, a touch-sensitive display screen, and a controller communicatively coupled to each of the probes and the display screen. The controller is configured to perform operations including displaying a plurality of dynamically sized channel control regions within a user interface of the touch-sensitive display screen. Each of the plurality of channel control regions corresponds with at least one of the plurality of probes and is sized based at least in part on a number of the plurality of probes. The operations can include detecting a user touch action directed to a user-selected channel control region of the plurality of dynamically sized channel control regions. The operations can include performing a control action associated with the probe(s) that correspond with the user-selected channel control region when the user touch action is detected.
    Type: Grant
    Filed: March 2, 2023
    Date of Patent: November 14, 2023
    Assignee: Avent, Inc.
    Inventors: Joseph A. Cesa, Lisa M. McGregor, Jennifer J. Barrett, Tyler W. Crone, Lee W. Rhein, Christopher W. Thurrott, Morgan Rudolph, Scott Woodruff
  • Patent number: 11737819
    Abstract: A system for delivering energy to a patient's body is disclosed that includes a plurality of probes, a touch-sensitive display screen, and a controller communicatively coupled to each of the probes and the display screen. The controller is configured to perform operations including displaying a virtual control object in the user interface of the touch-sensitive display screen that is associated with an operating parameter of a treatment procedure performed with the probe. The controller is configured to adjust the operating parameter when a user touch action is directed to the virtual control object. The controller is configured to convert the virtual control object into a non-control label based, at least in part, on a current status of the treatment procedure. The controller is configured to prohibit adjustment of the operating parameter using the non-control label in response to a user touch action that is directed to the non-control label.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: August 29, 2023
    Assignee: Avent, Inc.
    Inventors: Joseph A. Cesa, Lisa M. McGregor, Jennifer J. Barrett, Tyler W. Crone, Lee W. Rhein, Christopher W. Thurrott, Morgan Rudolph, Scott Woodruff
  • Publication number: 20230200919
    Abstract: A system for delivering energy to a patient's body includes a plurality of probes, a touch-sensitive display screen, and a controller communicatively coupled to each of the probes and the display screen. The controller is configured to perform operations including displaying a plurality of dynamically sized channel control regions within a user interface of the touch-sensitive display screen. Each of the plurality of channel control regions corresponds with at least one of the plurality of probes and is sized based at least in part on a number of the plurality of probes. The operations can include detecting a user touch action directed to a user-selected channel control region of the plurality of dynamically sized channel control regions. The operations can include performing a control action associated with the probe(s) that correspond with the user-selected channel control region when the user touch action is detected.
    Type: Application
    Filed: March 2, 2023
    Publication date: June 29, 2023
    Inventors: Joseph A. Cesa, Lisa M. McGregor, Jennifer J. Barrett, Tyler W. Crone, Lee W. Rhein, Christopher W. Thurrott, Morgan Rudolph, Scott Woodruff
  • Patent number: 11622820
    Abstract: A system for delivering energy to a patient's body includes a plurality of probes, a touch-sensitive display screen, and a controller communicatively coupled to each of the probes and the display screen. The controller is configured to perform operations including displaying a plurality of dynamically sized channel control regions within a user interface of the touch-sensitive display screen. Each of the plurality of channel control regions corresponds with at least one of the plurality of probes and is sized based at least in part on a number of the plurality of probes. The operations can include detecting a user touch action directed to a user-selected channel control region of the plurality of dynamically sized channel control regions. The operations can include performing a control action associated with the probe(s) that correspond with the user-selected channel control region when the user touch action is detected.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: April 11, 2023
    Assignee: Avent, Inc.
    Inventors: Joseph A. Cesa, Lisa M. McGregor, Jennifer J. Barrett, Tyler W. Crone, Lee W. Rhein, Christopher W. Thurrott, Morgan Rudolph, Scott Woodruff
  • Publication number: 20220338941
    Abstract: A system for delivering energy to a patient's body includes a plurality of probes, a touch-sensitive display screen, and a controller communicatively coupled to each of the probes and the display screen. The controller is configured to perform operations including displaying a plurality of dynamically sized channel control regions within a user interface of the touch-sensitive display screen. Each of the plurality of channel control regions corresponds with at least one of the plurality of probes and is sized based at least in part on a number of the plurality of probes. The operations can include detecting a user touch action directed to a user-selected channel control region of the plurality of dynamically sized channel control regions. The operations can include performing a control action associated with the probe(s) that correspond with the user-selected channel control region when the user touch action is detected.
    Type: Application
    Filed: May 13, 2022
    Publication date: October 27, 2022
    Inventors: Joseph A. Cesa, Lisa M. McGregor, Jennifer J. Barrett, Tyler W. Crone, Lee W. Rhein, Christopher W. Thurrott, Morgan Rudolph, Scott Woodruff
  • Patent number: 11331152
    Abstract: A system for delivering energy to a patient's body is disclosed that includes a plurality of probes, a touch-sensitive display screen, and a controller communicatively coupled to each of the probes and the display screen. The controller is configured to perform operations including displaying a plurality of dynamically sized channel control regions within a user interface of the touch-sensitive display screen. Each of the plurality of channel control regions corresponds with at least one of the plurality of probes and is sized based at least in part on a number of the plurality of probes. The operations can include detecting a user touch action directed to a user-selected channel control region of the plurality of dynamically sized channel control regions. The operations can include performing a control action associated with the probe(s) that correspond with the user-selected channel control region when the user touch action is detected.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: May 17, 2022
    Assignee: Avent, Inc.
    Inventors: Joseph A. Cesa, Lisa M. McGregor, Jennifer J. Barrett, Tyler W. Crone, Lee W. Rhein, Christopher W. Thurrott, Morgan Rudolph, Scott Woodruff
  • Patent number: 11135003
    Abstract: A system and method for delivering energy to a patient's body includes a plurality of probes each having an elongate member with a distal region having an electrically non-conductive outer circumferential portion and a proximal region. Each of the plurality of probes further includes an electrically conductive energy delivery device extending distally from the electrically non-conductive outer circumferential portion for delivering one of electrical and radiofrequency energy to the patient's body. The energy delivery devices further include an electrically conductive outer circumferential surface. The system also includes at least one controller communicatively coupled to each of the plurality of probes. The controller includes a user interface having a control screen. The control screen includes an independent control module and a simultaneous control module that allows a user to select between independent control or simultaneous control of the plurality of probes.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: October 5, 2021
    Assignee: AVENT, INC.
    Inventors: Lisa M. McGregor, Lee Rhein, Tyler W. Crone, Joseph A. Cesa, Christopher W. Thurrott, Morgan Rudolph, Scott Woodruff
  • Publication number: 20200367963
    Abstract: A system for delivering energy to a patient's body is disclosed that includes a plurality of probes, a touch-sensitive display screen, and a controller communicatively coupled to each of the probes and the display screen. The controller is configured to perform operations including displaying a virtual control object in the user interface of the touch-sensitive display screen that is associated with an operating parameter of a treatment procedure performed with the probe. The controller is configured to adjust the operating parameter when a user touch action is directed to the virtual control object. The controller is configured to convert the virtual control object into a non-control label based, at least in part, on a current status of the treatment procedure. The controller is configured to prohibit adjustment of the operating parameter using the non-control label in response to a user touch action that is directed to the non-control label.
    Type: Application
    Filed: May 20, 2019
    Publication date: November 26, 2020
    Inventors: Joseph A. Cesa, Lisa M. McGregor, Jennifer J. Barrett, Tyler W. Crone, Lee W. Rhein, Christopher W. Thurrott, Morgan Rudolph, Scott Woodruff
  • Publication number: 20200367975
    Abstract: A system for delivering energy to a patient's body is disclosed that includes a plurality of probes, a touch-sensitive display screen, and a controller communicatively coupled to each of the probes and the display screen. The controller is configured to perform operations including displaying a plurality of dynamically sized channel control regions within a user interface of the touch-sensitive display screen. Each of the plurality of channel control regions corresponds with at least one of the plurality of probes and is sized based at least in part on a number of the plurality of probes. The operations can include detecting a user touch action directed to a user-selected channel control region of the plurality of dynamically sized channel control regions. The operations can include performing a control action associated with the probe(s) that correspond with the user-selected channel control region when the user touch action is detected.
    Type: Application
    Filed: May 20, 2019
    Publication date: November 26, 2020
    Inventors: Joseph A. Cesa, Lisa M. McGregor, Jennifer J. Barrett, Tyler W. Crone, Lee W. Rhein, Christopher W. Thurrott, Morgan Rudolph, Scott Woodruff
  • Publication number: 20200015879
    Abstract: A system and method for delivering energy to a patient's body includes a plurality of probes each having an elongate member with a distal region having an electrically non-conductive outer circumferential portion and a proximal region. Each of the plurality of probes further includes an electrically conductive energy delivery device extending distally from the electrically non-conductive outer circumferential portion for delivering one of electrical and radiofrequency energy to the patient's body. The energy delivery devices further include an electrically conductive outer circumferential surface. The system also includes at least one controller communicatively coupled to each of the plurality of probes. The controller includes a user interface having a control screen. The control screen includes an independent control module and a simultaneous control module that allows a user to select between independent control or simultaneous control of the plurality of probes.
    Type: Application
    Filed: July 13, 2018
    Publication date: January 16, 2020
    Inventors: Lisa M. McGregor, Lee Rhein, Tyler W. Crone, Joseph A. Cesa, Christopher W. Thurrott, Morgan Rudolph, Scott Woodruff