Patents by Inventor Mori M. Borumand

Mori M. Borumand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10753979
    Abstract: The present disclosure provides a system, method, and apparatus for battery monitoring. In one or more embodiments, the disclosed method involves injecting at least one test signal into a battery, and receiving at least one response signal from the battery. In one or more embodiments, the response signal(s) comprises at least one reflected signal. The method further involves comparing, with at least one processor, the response signal(s) with at least one baseline signal to produce at least one comparison signal. Also, the method involves detecting, with at least one processor, at least one anomaly within the battery by using the comparison signal(s). Further, the method involves determining, with at least one processor, a location at least one anomaly within the battery by using the comparison signal(s).
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: August 25, 2020
    Assignee: The Boeing Company
    Inventors: Terrance L. Thomas, Lowell W. Schaffner, Mori M. Borumand
  • Patent number: 9846199
    Abstract: A vehicle includes a body and at least one propulsion unit operatively coupled to the body. The vehicle also includes an electrical power system at least partially disposed within the body. The electrical power system includes a rechargeable battery and a health management unit operatively coupled to the rechargeable battery. The health management unit includes a state of health module configured to output information corresponding to battery health based on received battery-related data. The battery-related data includes data collected in real time operation of the rechargeable battery and battery relevant fault history of the vehicle.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: December 19, 2017
    Assignee: THE BOEING COMPANY
    Inventors: John L. Vian, Ali R. Mansouri, Rangasamy Elangovan, Mori M. Borumand, Khaled Abdel-Motagaly
  • Publication number: 20150100198
    Abstract: A vehicle includes a body and at least one propulsion unit operatively coupled to the body. The vehicle also includes an electrical power system at least partially disposed within the body. The electrical power system includes a rechargeable battery and a health management unit operatively coupled to the rechargeable battery. The health management unit includes a state of health module configured to output information corresponding to battery health based on received battery-related data. The battery-related data includes data collected in real time operation of the rechargeable battery and battery relevant fault history of the vehicle.
    Type: Application
    Filed: October 20, 2014
    Publication date: April 9, 2015
    Applicant: The Boeing Company
    Inventors: John L. Vian, Ali R. Mansouri, Rangasamy Elangovan, Mori M. Borumand, Khaled Abdel-Motagaly
  • Patent number: 8890480
    Abstract: Systems and methods for health management of rechargeable batteries are disclosed. In one embodiment, a rechargeable battery system includes a rechargeable battery, and a battery health management unit operatively coupled to the rechargeable battery and including a state of health module configured to estimate a battery health by receiving battery-related data and predicting one or more failure modes. The state of health module may further include a prognostic failure mode component configured to combine at least one flight data variable with at least one model-based prognostic. In alternate embodiments, the battery health management unit may further include a state of life module and a state of charge module.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: November 18, 2014
    Assignee: The Boeing Company
    Inventors: John L. Vian, Ali R. Mansouri, Rangasamy Elangovan, Mori M. Borumand, Khaled Abdel-Motagaly
  • Publication number: 20140300363
    Abstract: The present disclosure provides a system, method, and apparatus for battery monitoring. In one or more embodiments, the disclosed method involves injecting at least one test signal into a battery, and receiving at least one response signal from the battery. In one or more embodiments, the response signal(s) comprises at least one reflected signal. The method further involves comparing, with at least one processor, the response signal(s) with at least one baseline signal to produce at least one comparison signal. Also, the method involves detecting, with at least one processor, at least one anomaly within the battery by using the comparison signal(s). Further, the method involves determining, with at least one processor, a location at least one anomaly within the battery by using the comparison signal(s).
    Type: Application
    Filed: April 4, 2013
    Publication date: October 9, 2014
    Applicant: THE BOEING COMPANY
    Inventors: Terrance L. Thomas, Lowell W. Schaffner, Mori M. Borumand
  • Patent number: 8763742
    Abstract: In one aspect, a vehicle may include an energy storage device, the energy storage device being configured to supply electrical power to the vehicle; a cover defining an internal volume and an opening into the internal volume, the energy storage device being received in the internal volume, wherein the cover is formed as a layered structure including at least a first layer and a second layer inside the first layer, the first layer consisting of a woven ceramic fabric and the second layer consisting essentially of oxidized polyacrylonitrile fibers.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: July 1, 2014
    Assignee: The Boeing Company
    Inventors: Mori M. Borumand, David A. Bowen, Kevin O. Gaw, Chris J. Johnson
  • Patent number: 8443922
    Abstract: A containment device including a cover defining an internal volume and an opening into the internal volume, the cover being formed as a layered structure including at least a first layer and a second layer, the first layer comprising a woven ceramic fabric and the second layer comprising oxidized polyacrylonitrile fibers.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: May 21, 2013
    Assignee: The Boeing Company
    Inventors: Mori M. Borumand, David A. Bowen, Kevin O. Gaw, Chris J. Johnson
  • Patent number: 8406936
    Abstract: A system and methods for life optimal power management of a distributed or centralized battery network system for use in aircraft functions and subsystems are disclosed. The method determines power priority of the subsystems, and selectively distributes power from the battery network system to the subsystems based on the power priority. Concurrently with distributing power, the method manages the energy in the battery network system. To determine whether the battery power is sufficient for aircraft functions, the method also computes and indicates the actual available energy left in the battery network systems. With this approach, the system and methods can provide a persistent power supply in the event an unexpected battery failure occurs, thereby enabling the aircraft to safely maintain flight operability despite a battery failure.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: March 26, 2013
    Assignee: The Boeing Company
    Inventors: Mori M. Borumand, Ali R. Mansouri, John L. Vian
  • Patent number: 8010250
    Abstract: A system and methods for life optimal power management of a distributed or centralized battery network system for use in aircraft functions and subsystems are disclosed. The method determines power priority of the subsystems, and selectively distributes power from the battery network system to the subsystems based on the power priority. Concurrently with distributing power, the method manages the energy in the battery network system. To determine whether the battery power is sufficient for aircraft functions, the method also computes and indicates the actual available energy left in the battery network systems. With this approach, the system and methods can provide a persistent power supply in the event an unexpected battery failure occurs, thereby enabling the aircraft to safely maintain flight operability despite a battery failure.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: August 30, 2011
    Assignee: The Boeing Company
    Inventors: Mori M. Borumand, Ali R. Mansouri, John L. Vian
  • Publication number: 20110079456
    Abstract: A containment device including a cover defining an internal volume and an opening into the internal volume, the cover being formed as a layered structure including at least a first layer and a second layer, the first layer comprising a woven ceramic fabric and the second layer comprising oxidized polyacrylonitrile fibers.
    Type: Application
    Filed: October 7, 2009
    Publication date: April 7, 2011
    Inventors: Mori M. Borumand, David A. Bowen, Kevin O. Gaw, Chris J. Johnson
  • Publication number: 20100121587
    Abstract: Systems and methods for health management of rechargeable batteries are disclosed. In one embodiment, a rechargeable battery system includes a rechargeable battery, and a battery health management unit operatively coupled to the rechargeable battery and including a state of health module configured to estimate a battery health by receiving battery-related data and predicting one or more failure modes. The state of health module may further include a prognostic failure mode component configured to combine at least one flight data variable with at least one model-based prognostic. In alternate embodiments, the battery health management unit may further include a state of life module and a state of charge module.
    Type: Application
    Filed: November 30, 2006
    Publication date: May 13, 2010
    Applicant: The Boeing Company
    Inventors: John L. Vian, Ali R. Mansouri, Rangasamy Elangovan, Mori M. Borumand, Khaled Abdel-Motagaly
  • Publication number: 20080306637
    Abstract: A system and methods for life optimal power management of a distributed or centralized battery network system for use in aircraft functions and subsystems are disclosed. The method determines power priority of the subsystems, and selectively distributes power from the battery network system to the subsystems based on the power priority. Concurrently with distributing power, the method manages the energy in the battery network system. To determine whether the battery power is sufficient for aircraft functions, the method also computes and indicates the actual available energy left in the battery network systems. With this approach, the system and methods can provide a persistent power supply in the event an unexpected battery failure occurs, thereby enabling the aircraft to safely maintain flight operability despite a battery failure.
    Type: Application
    Filed: June 5, 2007
    Publication date: December 11, 2008
    Inventors: Mori M. Borumand, Ali R. Mansouri, John L. Vian