Patents by Inventor Moritz Boecker

Moritz Boecker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10322724
    Abstract: Brake force distribution via a combination of mechanical braking and regenerative braking techniques is described. In an example, a brake system of a vehicle can detect a braking action and can cause a first negative force to be distributed across two or more wheel assemblies associated with the vehicle. A control system of the vehicle can send a command to at least a power system of the vehicle to cause the power system to affect a second negative force on a first wheel assembly and a positive force on a second wheel assembly to cause an uneven distribution of brake force between the first wheel assembly and the second wheel assembly. As a result, a combined net braking force is applied to the front wheels—the wheels with the most grip—and a reduced net braking force to is applied to the rear wheels to prevent rear-wheel lock-up.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: June 18, 2019
    Assignee: Zoox, Inc.
    Inventors: Johannes Edren, Moritz Boecker, Ryan O'Leary Flatland
  • Publication number: 20190176637
    Abstract: A system for charging one or more batteries of a vehicle may include a charging box mounted to a vehicle to facilitate connection to a charge coupler from under the vehicle. The charge coupler may be configured to provide an electrical connection between an electrical power source and the charging box. A vehicle including the charging box may maneuver to a position above the charge coupler, after which electrical contacts of the charging box and the charge coupler may be brought into contact with one another. The charge coupler and/or the charging box may be configured to provide electrical communication between the electrical power source and the one or more batteries, so that the electrical power source may charge one or more of the batteries. Thereafter, the electrical contacts may be separated from one another, and the vehicle may maneuver away from the charge coupler.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 13, 2019
    Inventors: Bryan Emrys Booth, Moritz Boecker, Kyle Matthew Foley, Robert Alan Ng, Da Liu, Timothy David Kentley-Klay
  • Publication number: 20190152482
    Abstract: Brake force distribution via a combination of mechanical braking and regenerative braking techniques is described. In an example, a brake system of a vehicle can detect a braking action and can cause a first negative force to be distributed across two or more wheel assemblies associated with the vehicle. A control system of the vehicle can send a command to at least a power system of the vehicle to cause the power system to affect a second negative force on a first wheel assembly and a positive force on a second wheel assembly to cause an uneven distribution of brake force between the first wheel assembly and the second wheel assembly. As a result, a combined net braking force is applied to the front wheels—the wheels with the most grip—and a reduced net braking force to is applied to the rear wheels to prevent rear-wheel lock-up.
    Type: Application
    Filed: January 28, 2019
    Publication date: May 23, 2019
    Inventors: Johannes Edren, Moritz Boecker, Ryan O'Leary Flatland
  • Publication number: 20190092257
    Abstract: An electrical system can include a power supply configured to provide electrical power to components at a time at which the electrical system experiences an electrical fault. The electrical system can include a first battery electrically coupled in parallel to a second battery via an electrical bus, whereby the first and second batteries can provide electrical power to a first electrical load and a second electrical load. Upon experiencing a fault, a first circuit element can electrically decouple the first battery and the second battery by opening a circuit provided by the electrical bus, thereby isolating the first battery from the second battery. Next, the battery experiencing the fault can include a second circuit element that can electrically decouple the battery experiencing the fault from a respective electrical load, while the battery isolated from the fault can continue to provide electrical power to components.
    Type: Application
    Filed: September 22, 2017
    Publication date: March 28, 2019
    Inventors: Moritz Boecker, Bryan Booth, Kyle Matthew Foley, Robert Ng, Timothy David Kentley-Klay
  • Publication number: 20190052119
    Abstract: An electrical system may include a power circuit configured to provide a power output, first and second batteries, and first and second switches configured to connect and disconnect the first and second batteries, respectively, to the power output in parallel with one another. The electrical system may also include a controller electrically connected to the first and the second switches, and configured to control operation of the first switch and/or the second switch. The electrical system may also include a load predictor in communication with the controller and configured to predict power demands of an electric load on the power circuit and send a signal indicative of the predicted power demands to the controller, which may activate the first switch and/or the second switch to connect the first battery and/or the second battery to the power output based at least in part on the signal indicative of the predicted load.
    Type: Application
    Filed: August 10, 2017
    Publication date: February 14, 2019
    Inventors: Austin Hendrix, Moritz Boecker, Robert Edward Somers
  • Patent number: 10189476
    Abstract: Brake force distribution via a combination of mechanical braking and regenerative braking techniques is described. In an example, a brake system of a vehicle can detect a braking action and can cause a first negative force to be distributed across two or more wheel assemblies associated with the vehicle. A control system of the vehicle can send a command to at least a power system of the vehicle to cause the power system to affect a second negative force on a first wheel assembly and a positive force on a second wheel assembly to cause an uneven distribution of brake force between the first wheel assembly and the second wheel assembly. As a result, a combined net braking force is applied to the front wheels—the wheels with the most grip—and a reduced net braking force to is applied to the rear wheels to prevent rear-wheel lock-up.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: January 29, 2019
    Assignee: Zoox, Inc.
    Inventors: Johannes Edren, Moritz Boecker, Ryan O'Leary Flatland