Patents by Inventor Morley O. Stone

Morley O. Stone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220412914
    Abstract: Biological chemicals, potentially found in blood are measured by collecting sweat and determining the concentration or meaning of the selected chemical in sweat. The sweat can be collected using a time based, interval collector and analyzed using an external device. It can also be collected on a one time basis, using a flexible, chemical capacitor, or on a continuous basis using a chemical, field effect transducer.
    Type: Application
    Filed: August 30, 2022
    Publication date: December 29, 2022
    Inventors: Joshua A. Hagen, Jason C. Heikenfeld, Ian Papautsky, Linlin Hou, Rajesh Naik, Nancy Kelley-Loughnan, Morley O. Stone, John Busbee, Xiao Wang
  • Patent number: 11460430
    Abstract: Biological chemicals, potentially found in blood are measured by collecting sweat and determining the concentration or meaning of the selected chemical in sweat. The sweat can be collected using a time based, interval collector and analyzed using an external device. It can also be collected on a one time basis, using a flexible, chemical capacitor, or on a continuous basis using a chemical, field effect transducer.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: October 4, 2022
    Assignee: University Of Cincinnati
    Inventors: Joshua A. Hagen, Jason Charles Heikenfeld, Ian Papautsky, Linlin Hou, Rajesh Naik, Nancy Kelley-Loughnane, Morley O. Stone, John Busbee, Xiao Wang
  • Patent number: 8974904
    Abstract: A nanocomposite dry adhesive. The nanocomposite dry adhesive includes a substrate; and an array of vertically aligned single-walled carbon nanotubes or vertically aligned multi-walled carbon nanotubes on the substrate, wherein the nanocomposite dry adhesive utilizes the array of single-walled carbon nanotubes or multi-walled carbon nanotubes as synthesized, the as synthesized single-walled carbon nanotubes being substantially free of randomly entangled nanotube segments on top of the vertically aligned single-walled carbon nanotubes, the as synthesized multi-walled carbon nanotubes having randomly entangled nanotube segments on top of the vertically aligned multi-walled carbon nanotubes; wherein the dry adhesive has a normal adhesion strength of at least about 5 N·cm?2, and a shear adhesion strength of at least about 13 N·cm?2. Methods of making a nanocomposite dry adhesive are also described.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: March 10, 2015
    Assignee: University of Dayton
    Inventors: Liming Dai, Liangti Qu, Morley O. Stone
  • Publication number: 20090011232
    Abstract: A nanocomposite dry adhesive. The nanocomposite dry adhesive includes a substrate; and an array of vertically aligned single-walled carbon nanotubes or vertically aligned multi-walled carbon nanotubes on the substrate, wherein the nanocomposite dry adhesive utilizes the array of single-walled carbon nanotubes or multi-walled carbon nanotubes as synthesized, the as synthesized single-walled carbon nanotubes being substantially free of randomly entangled nanotube segments on top of the vertically aligned single-walled carbon nanotubes, the as synthesized multi-walled carbon nanotubes having randomly entangled nanotube segments on top of the vertically aligned multi-walled carbon nanotubes; wherein the dry adhesive has a normal adhesion strength of at least about 5 N·cm?2, and a shear adhesion strength of at least about 13 N·cm?2. Methods of making a nanocomposite dry adhesive are also described.
    Type: Application
    Filed: July 5, 2007
    Publication date: January 8, 2009
    Applicant: UNIVERSITY OF DAYTON
    Inventors: Liming Dai, Liangti Qu, Morley O. Stone
  • Publication number: 20080176760
    Abstract: A method is provided for identifying and isolating peptides capable of binding of inorganic materials such as silica, silver, germanium, cobalt, iron, or oxides thereof, or other materials on a nanometric scale such as carbon nanotubes, using a combinatorial phage display peptide library and a polymerase-chain reaction (PCR) step to obtain specific amino acids sequences. In the method of the invention, a combinatorial phage display library is used to isolate and select the desired binding peptides by a series of steps of target binding of phage with the nanometric material of interest, elution and purification of the bound phages, and amplification using PCR to determine the sequences of phages producing the desired binding peptides. The binding peptides of the invention are particularly advantageous in that they may be used as templates to guide the development of useful structures on a nanometric scale.
    Type: Application
    Filed: March 27, 2008
    Publication date: July 24, 2008
    Inventors: Rajesh R. Naik, Morley O. Stone, Daniel C. Carter
  • Patent number: 7193037
    Abstract: An apparatus and method for detecting infrared radiation is provided which comprises a temperature-sensing helical coiled-coil protein such as TlpA, CC1, collagen or myosin, incorporated into an electrically conductive film or gel deposited onto an electrically conductive medium such as an electrode, means for recording changes in conductivity or resistance of the conductive film or gel caused by the presence of infrared radiation and the effect of the infrared radiation on the thermal-sensing protein, and means to analyze the changes in conductivity or resistance in the conductive film caused by the infrared radiation so as to determine if infrared radiation is present.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: March 20, 2007
    Assignees: The United States of America as represented by the Secretary of the Air Force, New Century Pharmaceuticals, Inc.
    Inventors: Lawrence L. Brott, Rajesh R. Naik, Morley O. Stone, Daniel C. Carter
  • Patent number: 6624915
    Abstract: A process and photoactive media for holographic recording and micro/nanofabrication of optical and bio-optical structures via the simultaneous absorption of two-photons by the photoactive media to induce a simultaneous photochemical change in regions of constructive interference within a holographic pattern is disclosed. The photochemical process of polymerization resulting from the simultaneous absorption of two-photons may be used for the microfabrication of micro and nanoscaled features, holographic data storage, and the formation of switchable diffraction gratings.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: September 23, 2003
    Assignee: Science Applications International Corporation
    Inventors: Sean M. Kirkpatrick, Morley O. Stone, Jeffery W. Baur, Lisa R. Denny, Lalgudi V. Natarajan, Timothy J. Bunning