Patents by Inventor Morris F. Dilmore

Morris F. Dilmore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8100318
    Abstract: A process of making useful shapes by joining of tungsten alloys. Joining of tungsten heavy alloys which are alloys typically made from W—Ni—Fe is used. These alloys are typically manufactured by liquid phase sintering. This leads to difficulty in producing large length to diameter ratio parts that have some significant weight (such as penetrators). A “brick and mortar” approach is employed wherein smaller segments of this alloy (low length to diameter ratio) are joined to together to produce a larger part with higher length to diameter ratio.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: January 24, 2012
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Animesh Bose, Morris F. Dilmore, Alan J. Armstrong
  • Patent number: 6461564
    Abstract: The method of consolidating a body in any of initially powdered, sintered, fibrous, sponge, or other form capable of compaction, that includes providing flowable pressure transmission particles having carbonaceous and ceramic composition or compositions; heating particles to elevated temperature; locating the heated particles in a bed; positioning the body at the bed, to receive pressure transmission; effecting pressurization of the bed to cause pressure transmission via the particles to the body, thereby to compact and consolidate the body into desired shape, increasing its density, the body consisting essentially of one or more metals selected from the following group: tungsten, rhenium, uranium, tantalum, platinum, copper, gold, hafnium, molybdenum, titanium, zirconium, aluminum, the consolidated body having, along a body dimension, one of the following characteristics: decreasing strength, increasing strength, or decreasing ductility (strain hardening) and increasing ductility (strain hardening).
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: October 8, 2002
    Inventors: Morris F. Dilmore, Henry S. Meeks, III, Marc S. Fleming
  • Publication number: 20020136658
    Abstract: The method of consolidating a body in any of initially powdered, sintered, fibrous, sponge, or other form capable of compaction, that includes providing flowable pressure transmission particles having carbonaceous and ceramic composition or compositions; heating particles to elevated temperature; locating the heated particles in a bed; positioning the body at the bed, to receive pressure transmission; effecting pressurization of the bed to cause pressure transmission via the particles to the body, thereby to compact and consolidate the body into desired shape, increasing its density, the body consisting essentially of one or more metals selected from the following group: tungsten, rhenium, uranium, tantalum, platinum, copper, gold, hafnium, molybdenum, titanium, zirconium, aluminum, the consolidated body having, along a body dimension, one of the following characteristics: decreasing strength, increasing strength, or decreasing ductility (strain hardening) and increasing ductility (strain hardening).
    Type: Application
    Filed: January 8, 2002
    Publication date: September 26, 2002
    Inventors: Morris F. Dilmore, Henry S. Meeks, Marc S. Fleming
  • Patent number: 6355209
    Abstract: A method of consolidating metal powder to form an object that includes pressing the powder into a preform, and preheating the preform to elevated temperature; providing flowable pressure transmitting particles and transmitting microwaves into the particles to heat same, and providing a bed of the flowable and heated pressure transmitting particles; positioning the preform in such relation to the bed that the particles substantially encompass the perform; and pressurizing the bed to compress the particles and cause pressure transmission to the preform, thereby to consolidate the preform into a desired object shape, the powder of step a) consisting essentially of at least two of the following: W, Ni, Fe, Co, manganese and titanium, and preferably at least three of same.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: March 12, 2002
    Assignee: Ceracon, Inc.
    Inventors: Morris F. Dilmore, Henry S. Meeks, III, Marc S. Fleming