Patents by Inventor Morris P. Kesler

Morris P. Kesler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9601266
    Abstract: Described herein are systems, devices, and methods for a wireless energy transfer source that can support multiple wireless energy transfer techniques. A wireless energy source is configured to support wireless energy transfer techniques without requiring separate independent hardware for each technique. An amplifier is used to energize different energy transfer elements tuned for different frequencies. The impendence of each energy transfer element is configured such that only some of the energy transfer elements is active at a time. The different energy transfer elements and energy transfer techniques may be selectively activated using an amplifier without using active switches to select or activate different coils and/or resonators.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: March 21, 2017
    Assignee: WiTricity Corporation
    Inventors: Aristeidis Karalis, Simon Verghese, Nathan Andrew Pallo, Morris P. Kesler, Konrad Kulikowski, Alexander P. McCauley, Andre B. Kurs
  • Patent number: 9595378
    Abstract: Described herein are improved configurations for a wireless power transfer and mechanical enclosures. The described structure holds and secures the components of a resonator while providing adequate structural integrity, thermal control, and protection against environmental elements. The coil enclosure structure comprises a flat, planar material with a recess for an electrical conductor wrapped around blocks of magnetic material as well as an additional planar material to act as a cover for the recess.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: March 14, 2017
    Assignee: WiTricity Corporation
    Inventors: Jude R. Jonas, Matthew J. MacDonald, Morris P. Kesler, Andre B. Kurs, Jonathan Sirota, Konrad J. Kulikowski, Hamik Amirkhani
  • Patent number: 9596005
    Abstract: A variable shape magnetic resonator includes an array of at least two resonators each being of a substantially different shapes and at least one power and control circuit configured to selectively connect to and energize at least one of the resonators.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: March 14, 2017
    Assignee: WiTricity Corporation
    Inventors: Andre B. Kurs, Aristeidis Karalis, Morris P. Kesler, Andrew J. Campanella, Katherine L. Hall, Konrad J. Kulikowski, Marin Soljacic
  • Publication number: 20170066335
    Abstract: A control architecture for electric vehicle wireless power transmission systems that may be segmented so that certain essential and/or standardized control circuits, programs, algorithms, and the like, are permanent to the system and so that other non-essential and/or augmentable control circuits, programs, algorithms, and the like, may be reconfigurable and/or customizable by a user of the system. The control architecture may be distributed to various components of the wireless power system so that a combination of local or low-level controls operating at relatively high-speed can protect critical functionality of the system while higher-level and relatively lower speed control loops can be used to control other local and system-wide functionality.
    Type: Application
    Filed: November 18, 2016
    Publication date: March 9, 2017
    Inventors: Simon Verghese, Morris P. Kesler, Katherine L. Hall, Herbert Toby Lou, Ron Fiorello
  • Publication number: 20170062124
    Abstract: Described herein are improved configurations for a wireless power converter that includes at least one receiving magnetic resonator configured to capture electrical energy received wirelessly through a first oscillating magnetic field characterized by a first plurality of parameters, and at least one transferring magnetic resonator configured to generate a second oscillating magnetic field characterized by a second plurality of parameters different from the first plurality of parameters, wherein the electrical energy from the at least one receiving magnetic resonator is used to energize the at least one transferring magnetic resonator to generate the second oscillating magnetic field.
    Type: Application
    Filed: July 19, 2013
    Publication date: March 2, 2017
    Inventors: Katherine L. Hall, Morris P. Kesler, Konrad J. Kulikowski, Andrew J. Campanella
  • Patent number: 9584189
    Abstract: A variable effective size magnetic resonator includes an array of resonators each being one of at least two substantially different characteristic sizes and a mechanism for detuning at least one of the resonators from the resonant frequency of the variable effective size magnetic resonator.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: February 28, 2017
    Assignee: WiTricity Corporation
    Inventors: Andre B. Kurs, Aristeidis Karalis, Morris P. Kesler, Andrew J. Campanella, Katherine L. Hall, Konrad J. Kulikowski, Marin Soljacic
  • Publication number: 20170054319
    Abstract: Wireless energy transfer apparatus include, in at least one aspect, a device resonator configured to supply power for a load by receiving wirelessly transferred power from a source resonator; a temperature sensor positioned to measure a temperature of a component of the apparatus; a tunable component coupled to the device resonator to adjust a resonant frequency of the device resonator, an effective impedance the device resonator, or both; and control circuitry configured to, in response to detecting a temperature condition using the temperature sensor, (i) tune the tunable component to adjust the resonant frequency of the device resonator, the effective impedance of the device resonator, or both, and (ii) signal the source resonator regarding the temperature condition to cause an adjustment of a resonant frequency of the source resonator, a power output of the source resonator, or both.
    Type: Application
    Filed: October 31, 2016
    Publication date: February 23, 2017
    Inventors: Morris P. Kesler, Katherine L. Hall, Andre B. Kurs, Aristeidis Karalis, Marin Soljacic, Andrew J. Campanella, David A. Schatz
  • Publication number: 20170053736
    Abstract: Described herein are improved configurations for a wireless power converter that includes at least one receiving magnetic resonator configured to capture electrical energy received wirelessly through a first oscillating magnetic field characterized by a first plurality of parameters, and at least one transferring magnetic resonator configured to generate a second oscillating magnetic field characterized by a second plurality of parameters different from the first plurality of parameters, wherein the electrical energy from the at least one receiving magnetic resonator is used to energize the at least one transferring magnetic resonator to generate the second oscillating magnetic field.
    Type: Application
    Filed: July 19, 2013
    Publication date: February 23, 2017
    Applicant: WITRICITY CORPORATION
    Inventors: Katherine L. Hall, Morris P. Kesler, Konrad J. Kulikowski, Andrew J. Campanella
  • Patent number: 9577436
    Abstract: Described herein are improved configurations for a wireless power transfer. Described are methods and designs for implantable electronics and devices. Wireless energy transfer is utilized to eliminate cords and power cables puncturing the skin to power an implantable device. Repeater resonators are employed to improve the power transfer characteristics between the source and the device resonators.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: February 21, 2017
    Assignee: WiTricity Corporation
    Inventors: Morris P. Kesler, Katherine L. Hall, Andre B. Kurs, Aristeidis Karalis, Marin Soljacic, Andrew J. Campanella, David A. Schatz
  • Publication number: 20170025904
    Abstract: The disclosure features apparatus, methods, and systems for wireless power transfer that include a power source featuring at least one resonator, a power receiver featuring at least one resonator, a first detector featuring one or more loops of conductive material and configured to generate an electrical signal based on a magnetic field between the power source and the power receiver, a second detector featuring conductive material, and control electronics coupled to the first and second detectors, where during operation, the control electronics are configured to measure the electrical signal of the first detector and compare the measured electrical signal of the first detector to baseline electrical information for the first detector to determine information about whether debris is positioned between the power source and the power receiver.
    Type: Application
    Filed: October 7, 2016
    Publication date: January 26, 2017
    Inventors: Arunanshu Mohan Roy, Noam Katz, Andre B. Kurs, Christopher Buenrostro, Simon Verghese, Morris P. Kesler, Katherine L. Hall, Herbert Toby Lou
  • Patent number: 9544683
    Abstract: Techniques herein provide wireless energy transfer to audio devices such as headphones, headsets, hearing aids, and the like. Audio devices are integrated with a device resonator. The device resonator may be positioned and oriented to reduce interaction with lossy or sensitive components of the audio device. A repeater resonator and/or a source resonator is integrated into a headrest of a seat or a chair providing continuous power to the headphones while in use. The audio devices may be recharged wirelessly when positioned near source resonators that may be embedded in pads, tables, carrying cases, cups, and the like.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: January 10, 2017
    Assignee: WiTricity Corporation
    Inventors: Steven J. Ganem, Hiroshi A. Mendoza, Morris P. Kesler, Konrad J. Kulikowski, Andre B. Kurs, Alexander P. McCauley, Eric R. Giler, Katherine L. Hall, Gozde Guckaya
  • Publication number: 20160362015
    Abstract: A wireless power system for powering a television includes a source resonator, configured to generate an oscillating magnetic field, and at least one television component attached to at least one device resonator, wherein the at least one device resonator is configured to wirelessly receive power from the source resonator via the oscillating magnetic field when the distance between the source resonator and the at least one device resonator is more than 5 cm, and wherein at least one television component draws at least 10 Watts of power.
    Type: Application
    Filed: July 27, 2016
    Publication date: December 15, 2016
    Inventors: Ron Fiorello, Andrew J. Campanella, Katherine L. Hall, Morris P. Kesler, Konrad J. Kulikowski, Eric R. Giler
  • Patent number: 9515495
    Abstract: Described herein are improved configurations for a wireless power transfer for electronic devices that include at least one source magnetic resonator including a capacitively-loaded conducting loop coupled to a power source and configured to generate an oscillating magnetic field and at least one device magnetic resonator, distal from said source resonators, comprising a capacitively-loaded conducting loop configured to convert said oscillating magnetic fields into electrical energy, wherein at least one said resonator has a keep-out zone around the resonator that surrounds the resonator with a layer of non-lossy material.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: December 6, 2016
    Assignee: WiTricity Corporation
    Inventors: Andre B. Kurs, Katherine L. Hall, Morris P. Kesler, Marin Soljacic, Eric R. Giler
  • Patent number: 9515494
    Abstract: A wireless power system for powering a television includes a source resonator, configured to generate an oscillating magnetic field, and at least one television component attached to at least one device resonator, wherein the at least one device resonator is configured to wirelessly receive power from the source resonator via the oscillating magnetic field when the distance between the source resonator and the at least one device resonator is more than 5 cm, and wherein at least one television component draws at least 10 Watts of power.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: December 6, 2016
    Assignee: WiTricity Corporation
    Inventors: Andre B. Kurs, Aristeidis Karalis, Andrew J. Campanella, Morris P. Kesler
  • Publication number: 20160352152
    Abstract: Described herein are improved configurations for a wireless power transfer. The parameters of components of the wireless energy transfer system are adjusted to control the power delivered to the load at the device. The power output of the source amplifier is controlled to maintain a substantially 50% duty cycle at the rectifier of the device.
    Type: Application
    Filed: May 31, 2016
    Publication date: December 1, 2016
    Inventors: Aristeidis Karalis, Morris P. Kesler, Katherine L. Hall, Nathan Andrew Pallo
  • Publication number: 20160336803
    Abstract: A magnetic resonator includes an inductor comprising a conductive first loop having a first dipole moment and a conductive second loop having a second dipole moment wherein a direction of the first dipole moment is substantially opposite to a direction of the second dipole moment and at least one capacitor in series with at least one of the first loop and the second loop.
    Type: Application
    Filed: March 31, 2016
    Publication date: November 17, 2016
    Inventors: Andre B. Kurs, Morris P. Kesler, Katherine L. Hall, Aristeidis Karalis, Simon Verghese, Volkan Efe, Marin Soljacic, Alexander P. McCauley, Maria Empar Rollano Hijarrubia
  • Publication number: 20160336812
    Abstract: A wireless power system for powering a television includes a source resonator, configured to generate an oscillating magnetic field, and at least one television component attached to at least one device resonator, wherein the at least one device resonator is configured to wirelessly receive power from the source resonator via the oscillating magnetic field when the distance between the source resonator and the at least one device resonator is more than 5 cm, and wherein at least one television component draws at least 10 Watts of power.
    Type: Application
    Filed: July 27, 2016
    Publication date: November 17, 2016
    Inventors: Ron Fiorello, Andrew J. Campanella, Katherine L. Hall, Morris P. Kesler, Konrad J. Kulikowski, Eric R. Giler
  • Patent number: 9496719
    Abstract: Wireless energy transfer methods and designs for implantable electronics and devices include, in at least one aspect, a device resonator configured to be included in an implantable medical device and supply power for a load of the implantable medical device by receiving wirelessly transferred power from a source resonator coupled with a power source; temperature sensors positioned to measure temperatures of the device resonator at different locations; a tunable component coupled to the device resonator; and control circuitry configured and arranged to adjust the tunable component to detune the device resonator in response to a measurement from at least one of the temperature sensors.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: November 15, 2016
    Assignee: WiTricity Corporation
    Inventors: Morris P. Kesler, Katherine L. Hall, Andre B. Kurs, Aristeidis Karalis, Marin Soljacic, Andrew J. Campanella, David A. Schatz
  • Publication number: 20160301253
    Abstract: Described herein are improved configurations for a wireless power transfer for electronic devices that include at least one source magnetic resonator including a capacitively-loaded conducting loop coupled to a power source and configured to generate an oscillating magnetic field and at least one device magnetic resonator, distal from said source resonators, comprising a capacitively-loaded conducting loop configured to convert said oscillating magnetic fields into electrical energy, wherein at least one said resonator has a keep-out zone around the resonator that surrounds the resonator with a layer of non-lossy material.
    Type: Application
    Filed: April 13, 2016
    Publication date: October 13, 2016
    Inventors: Andre B. Kurs, Katherine L. Hall, Morris P. Kesler, Marin Soljacic, Eric R. Giler
  • Patent number: 9465064
    Abstract: The disclosure features apparatus, methods, and systems for wireless power transfer that include a power source featuring at least one resonator, a power receiver featuring at least one resonator, a first detector featuring one or more loops of conductive material and configured to generate an electrical signal based on a magnetic field between the power source and the power receiver, a second detector featuring conductive material, and control electronics coupled to the first and second detectors, where during operation, the control electronics are configured to measure the electrical signal of the first detector and compare the measured electrical signal of the first detector to baseline electrical information for the first detector to determine information about whether debris is positioned between the power source and the power receiver.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: October 11, 2016
    Assignee: WiTricity Corporation
    Inventors: Arunanshu Mohan Roy, Noam Katz, Andre B. Kurs, Christopher Buenrostro, Simon Verghese, Morris P. Kesler, Katherine L. Hall, Herbert Toby Lou