Patents by Inventor Moshe Daniel

Moshe Daniel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180131417
    Abstract: In a wireless distribution system, a test signal(s) having a first power level is injected from a first contact point. The test signal(s) is configured to propagate from the first contact point to a second contact point over a downlink path and an uplink path, thus creating a signal loop(s). A second power level of the test signal(s) is measured at the second contact point, and an actual loop gain of the wireless distribution system is determined by subtracting the first power level from the second power level. By determining the actual loop gain of the wireless distribution system, it is possible to further determine a gain margin of the wireless distribution system. Based on the gain margin, it is possible to determine optimization possibilities for the wireless distribution system to maximize capacity and performance of the wireless distribution system.
    Type: Application
    Filed: January 3, 2018
    Publication date: May 10, 2018
    Inventor: Liav Moshe Daniel
  • Patent number: 9967754
    Abstract: Monitoring non-supported wireless spectrum within a coverage area of a distributed antenna system (DAS) in which a listening module connected to a remote unit of the DAS monitors non-supported wireless frequencies (i.e., frequencies that are outside the frequency ranges supported by the downlink and uplink signals of the DAS), via one or more antennas. The listening module also transmits the wireless frequencies to a monitoring module connected to head-end equipment (HEE) of the DAS. In that manner, a monitoring module can use an existing DAS infrastructure to monitor non-supported portions of the wireless spectrum at remote locations. In addition to avoiding the need to run a parallel DAS infrastructure, the disclosed arrangements are also useful in shared spectrum environments and other environments where efficient spectrum utilization is desired.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: May 8, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Igor Berlin, Liav Moshe Daniel, Yoni Henia, Rami Reuven, Motti Yakobi
  • Patent number: 9960850
    Abstract: Methods and systems for reducing leaked downlink interference signals in a remote unit uplink path(s) in a distributed antenna system (DAS) are provided. In a remote antenna unit (RAU) disclosed herein, a downlink interference signal may be leaked from a downlink path to an uplink path in the RAU. In this regard, an adjustment circuit is provided in the downlink path of the RAU to suppress the downlink interference signal. A control system is provided in the DAS to monitor the leaked downlink interference signal and control the adjustment circuit in the RAU to minimize the leaked downlink interference signal in the uplink path. By providing the adjustment circuit in the RAU and the control system in the DAS to minimize the leaked downlink interference signal in the uplink path, it is possible to reduce interferences between downlink and uplink communications signals without increasing costs of the RAU.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: May 1, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Liav Moshe Daniel, Maor Saig, Motti Yakobi
  • Patent number: 9882613
    Abstract: Embodiments of the disclosure relate to determining actual loop gain in a distributed antenna system (DAS). In this regard, a test signal(s) having a first power level is injected into a DAS from a first contact point. The test signal(s) is configured to propagate from the first contact point to a second contact point over a downlink path and an uplink path, thus creating a signal loop(s). A second power level of the test signal(s) is measured at the second contact point, and an actual loop gain of the DAS is determined by subtracting the first power level from the second power level. By determining the actual loop gain of the DAS, it is possible to further determine a gain margin of the DAS. Based on the gain margin, it is possible to determine optimization possibilities for the DAS to maximize capacity and performance of the DAS.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: January 30, 2018
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Liay Moshe Daniel
  • Publication number: 20170288716
    Abstract: Embodiments of the disclosure relate to reducing out-of-channel noise in a wireless distribution system (WDS). A digital filter in a remote unit is configured to suppress out-of-channel noise in a downlink digital communications signal based on at least one filter configuration parameter received from a control circuit. The control circuit is configured to determine the filter configuration parameter based on physical characteristics of the downlink digital communications signal. By suppressing the out-of-channel noise of the downlink digital communications signal, it is possible to provide a downlink RF communications signal communicated from the remote unit that complies with a spectrum emission mask (SEM).
    Type: Application
    Filed: March 31, 2016
    Publication date: October 5, 2017
    Inventors: Moshe Daniel, Roi Yosy Ziv
  • Patent number: 9692585
    Abstract: Optimizing ripple reductions in equalizers shared between multiple interface ports in a distributed antenna system (DAS). In one aspect, a downlink equalizer is shared between a downlink simplex port and a duplex port in a radio interface module(s) (RIM(s)) in the DAS. In another aspect, to optimize ripple reduction in the downlink equalizer, the downlink equalizer is configured to go through a plurality of downlink equalizer states that each can generate a downlink equalizer frequency response affecting downlink ripple of the RIM(s). At each of the downlink equalizer states, a test signal is provided to the downlink equalizer and a corresponding downlink ripple of the RIM(s) is recorded. When all of the downlink equalizer states are evaluated based on the test signal, the downlink equalizer is configured to function based on the downlink equalizer state associated with the smallest downlink ripple of the RIM(s).
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: June 27, 2017
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Liav Moshe Daniel
  • Publication number: 20170149504
    Abstract: Methods and systems for reducing leaked downlink interference signals in a remote unit uplink path(s) in a distributed antenna system (DAS) are provided. In a remote antenna unit (RAU) disclosed herein, a downlink interference signal may be leaked from a downlink path to an uplink path in the RAU. In this regard, an adjustment circuit is provided in the downlink path of the RAU to suppress the downlink interference signal. A control system is provided in the DAS to monitor the leaked downlink interference signal and control the adjustment circuit in the RAU to minimize the leaked downlink interference signal in the uplink path. By providing the adjustment circuit in the RAU and the control system in the DAS to minimize the leaked downlink interference signal in the uplink path, it is possible to reduce interferences between downlink and uplink communications signals without increasing costs of the RAU.
    Type: Application
    Filed: February 6, 2017
    Publication date: May 25, 2017
    Inventors: Liav Moshe Daniel, Maor Saig, Motti Yakobi
  • Publication number: 20170149478
    Abstract: One embodiment of the disclosure relates to supporting distinct single-input single-output (SISO) services in a multiple-input multiple-output (MIMO) baseband circuit, particularly suited for a distributed antenna system (DAS). In this regard, in one aspect, two communication paths in the MIMO baseband circuit are reconfigured to distribute two distinct SISO signals. A quadrature modulator modulates the two distinct SISO signals to two different radio frequency (RF) bands, respectively, based on a modulation frequency. In another aspect, the two or more distinct SISO signals are provided to the quadrature modulator using two intermediate frequencies (IFs) that are determined based on the center frequencies and bandwidths of the two different RF bands. By reconfiguring the MIMO baseband circuit to distribute the two distinct SISO signals, it is possible to retro-support new wireless communication services and/or new RF bands in existing DAS installations without replacing the MIMO baseband circuit.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Inventor: Liav Moshe Daniel
  • Patent number: 9608702
    Abstract: One embodiment of the disclosure relates to supporting distinct single-input single-output (SISO) services in a multiple-input multiple-output (MIMO) baseband circuit, particularly suited for a distributed antenna system (DAS). In this regard, in one aspect, two communication paths in the MIMO baseband circuit are reconfigured to distribute two distinct SISO signals. A quadrature modulator modulates the two distinct SISO signals to two different radio frequency (RF) bands, respectively, based on a modulation frequency. In another aspect, the two or more distinct SISO signals are provided to the quadrature modulator using two intermediate frequencies (IFs) that are determined based on the center frequencies and bandwidths of the two different RF bands. By reconfiguring the MIMO baseband circuit to distribute the two distinct SISO signals, it is possible to retro-support new wireless communication services and/or new RF bands in existing DAS installations without replacing the MIMO baseband circuit.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: March 28, 2017
    Assignee: Corning Optical Communications Wireless Ltd
    Inventor: Liav Moshe Daniel
  • Patent number: 9603155
    Abstract: Methods and systems for reducing leaked downlink interference signals in a remote unit uplink path(s) in a distributed antenna system (DAS) are provided. In a remote antenna unit (RAU) disclosed herein, a downlink interference signal may be leaked from a downlink path to an uplink path in the RAU. In this regard, an adjustment circuit is provided in the downlink path of the RAU to suppress the downlink interference signal. A control system is provided in the DAS to monitor the leaked downlink interference signal and control the adjustment circuit in the RAU to minimize the leaked downlink interference signal in the uplink path. By providing the adjustment circuit in the RAU and the control system in the DAS to minimize the leaked downlink interference signal in the uplink path, it is possible to reduce interferences between downlink and uplink communications signals without increasing costs of the RAU.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: March 21, 2017
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Liav Moshe Daniel, Maor Saig, Motti Yakobi
  • Publication number: 20170064565
    Abstract: Monitoring non-supported wireless spectrum within a coverage area of a distributed antenna system (DAS) in which a listening module connected to a remote unit of the DAS monitors non-supported wireless frequencies (i.e., frequencies that are outside the frequency ranges supported by the downlink and uplink signals of the DAS), via one or more antennas. The listening module also transmits the wireless frequencies to a monitoring module connected to head-end equipment (HEE) of the DAS. In that manner, a monitoring module can use an existing DAS infrastructure to monitor non-supported portions of the wireless spectrum at remote locations. In addition to avoiding the need to run a parallel DAS infrastructure, the disclosed arrangements are also useful in shared spectrum environments and other environments where efficient spectrum utilization is desired.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Inventors: Igor Berlin, Liav Moshe Daniel, Yoni Henia, Rami Reuven, Motti Yakobi
  • Publication number: 20170034833
    Abstract: Methods and systems for reducing leaked downlink interference signals in a remote unit uplink path(s) in a distributed antenna system (DAS) are provided. In a remote antenna unit (RAU) disclosed herein, a downlink interference signal may be leaked from a downlink path to an uplink path in the RAU. In this regard, an adjustment circuit is provided in the downlink path of the RAU to suppress the downlink interference signal. A control system is provided in the DAS to monitor the leaked downlink interference signal and control the adjustment circuit in the RAU to minimize the leaked downlink interference signal in the uplink path. By providing the adjustment circuit in the RAU and the control system in the DAS to minimize the leaked downlink interference signal in the uplink path, it is possible to reduce interferences between downlink and uplink communications signals without increasing costs of the RAU.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 2, 2017
    Inventors: Moshe Daniel, Maor Saig, Motti Yakobi
  • Patent number: 9526020
    Abstract: Monitoring non-supported wireless spectrum within a coverage area of a distributed antenna system (DAS) in which a listening module connected to a remote unit of the DAS monitors non-supported wireless frequencies (i.e., frequencies that are outside the frequency ranges supported by the downlink and uplink signals of the DAS), via one or more antennas. The listening module also transmits the wireless frequencies to a monitoring module connected to head-end equipment (HEE) of the DAS. In that manner, a monitoring module can use an existing DAS infrastructure to monitor non-supported portions of the wireless spectrum at remote locations. In addition to avoiding the need to run a parallel DAS infrastructure, the disclosed arrangements are also useful in shared spectrum environments and other environments where efficient spectrum utilization is desired.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: December 20, 2016
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Igor Berlin, Liav Moshe Daniel, Yoni Henia, Rami Reuven, Motti Yakobi
  • Publication number: 20160365901
    Abstract: One embodiment of the disclosure relates to supporting distinct single-input single-output (SISO) services in a multiple-input multiple-output (MIMO) baseband circuit, particularly suited for a distributed antenna system (DAS). In this regard, in one aspect, two communication paths in the MIMO baseband circuit are reconfigured to distribute two distinct SISO signals. A quadrature modulator modulates the two distinct SISO signals to two different radio frequency (RF) bands, respectively, based on a modulation frequency. In another aspect, the two or more distinct SISO signals are provided to the quadrature modulator using two intermediate frequencies (IFs) that are determined based on the center frequencies and bandwidths of the two different RF bands. By reconfiguring the MIMO baseband circuit to distribute the two distinct SISO signals, it is possible to retro-support new wireless communication services and/or new RF bands in existing DAS installations without replacing the MIMO baseband circuit.
    Type: Application
    Filed: December 30, 2015
    Publication date: December 15, 2016
    Inventor: Moshe Daniel
  • Publication number: 20160352612
    Abstract: Embodiments of the disclosure relate to determining actual loop gain in a distributed antenna system (DAS). In this regard, a test signal(s) having a first power level is injected into a DAS from a first contact point. The test signal(s) is configured to propagate from the first contact point to a second contact point over a downlink path and an uplink path, thus creating a signal loop(s). A second power level of the test signal(s) is measured at the second contact point, and an actual loop gain of the DAS is determined by subtracting the first power level from the second power level. By determining the actual loop gain of the DAS, it is possible to further determine a gain margin of the DAS. Based on the gain margin, it is possible to determine optimization possibilities for the DAS to maximize capacity and performance of the DAS.
    Type: Application
    Filed: May 18, 2016
    Publication date: December 1, 2016
    Inventor: Moshe Daniel
  • Publication number: 20160352497
    Abstract: Optimizing ripple reductions in equalizers shared between multiple interface ports in a distributed antenna system (DAS). In one aspect, a downlink equalizer is shared between a downlink simplex port and a duplex port in a radio interface module(s) (RIM(s)) in the DAS. In another aspect, to optimize ripple reduction in the downlink equalizer, the downlink equalizer is configured to go through a plurality of downlink equalizer states that each can generate a downlink equalizer frequency response affecting downlink ripple of the RIM(s). At each of the downlink equalizer states, a test signal is provided to the downlink equalizer and a corresponding downlink ripple of the RIM(s) is recorded. When all of the downlink equalizer states are evaluated based on the test signal, the downlink equalizer is configured to function based on the downlink equalizer state associated with the smallest downlink ripple of the RIM(s).
    Type: Application
    Filed: May 18, 2016
    Publication date: December 1, 2016
    Inventor: Moshe Daniel
  • Publication number: 20160105816
    Abstract: Monitoring non-supported wireless spectrum within a coverage area of a distributed antenna system (DAS) in which a listening module connected to a remote unit of the DAS monitors non-supported wireless frequencies (i.e., frequencies that are outside the frequency ranges supported by the downlink and uplink signals of the DAS), via one or more antennas. The listening module also transmits the wireless frequencies to a monitoring module connected to head-end equipment (HEE) of the DAS. In that manner, a monitoring module can use an existing DAS infrastructure to monitor non-supported portions of the wireless spectrum at remote locations. In addition to avoiding the need to run a parallel DAS infrastructure, the disclosed arrangements are also useful in shared spectrum environments and other environments where efficient spectrum utilization is desired.
    Type: Application
    Filed: December 17, 2015
    Publication date: April 14, 2016
    Inventors: Igor Berlin, Moshe Daniel, Yoni Henia, Rami Reuven, Motti Yakobi
  • Patent number: 9247543
    Abstract: Monitoring non-supported wireless spectrum within a coverage area of a distributed antenna system (DAS) in which a listening module connected to a remote unit of the DAS monitors non-supported wireless frequencies (i.e., frequencies that are outside the frequency ranges supported by the downlink and uplink signals of the DAS), via one or more antennas. The listening module also transmits the wireless frequencies to a monitoring module connected to head end equipment (HEE) of the DAS. In that manner, a monitoring module can use an existing DAS infrastructure to monitor non-supported portions of the wireless spectrum at remote locations. In addition to avoiding the need to run a parallel DAS infrastructure, the disclosed arrangements are also useful in shared spectrum environments and other environments where efficient spectrum utilization is desired.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: January 26, 2016
    Assignee: Corning Optical Communications Wireless Ltd
    Inventors: Igor Berlin, Liav Moshe Daniel, Yoni Henia, Rami Reuven, Motti Yakobi
  • Publication number: 20150031316
    Abstract: Monitoring non-supported wireless spectrum within a coverage area of a distributed antenna system (DAS) in which a listening module connected to a remote unit of the DAS monitors non-supported wireless frequencies (i.e., frequencies that are outside the frequency ranges supported by the downlink and uplink signals of the DAS), via one or more antennas. The listening module also transmits the wireless frequencies to a monitoring module connected to head end equipment (HEE) of the DAS. In that manner, a monitoring module can use an existing DAS infrastructure to monitor non-supported portions of the wireless spectrum at remote locations. In addition to avoiding the need to run a parallel DAS infrastructure, the disclosed arrangements are also useful in shared spectrum environments and other environments where efficient spectrum utilization is desired.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 29, 2015
    Applicant: Corning MobileAccess Ltd
    Inventors: Igor Berlin, Liav Moshe Daniel, Yoni Henia, Rami Reuven, Motti Yakobi
  • Patent number: 4926684
    Abstract: Apparatus for dissipating shock-wave energy experienced by a test model having a base and being supported at a first location by a sting in a wind tunnel comprising apparatus movably mounted onto the sting for locking thereto at a second location the base portion of the test model and apparatus for selectably moving said apparatus for locking into and out of locking engagement with the test model and the sting.
    Type: Grant
    Filed: May 19, 1989
    Date of Patent: May 22, 1990
    Assignee: Israel Aircraft Industries, Ltd.
    Inventors: Moshe Zilberman, Mordechai Livne, Doron Tchetchick, Moshe Daniel