Patents by Inventor Moshe Shoham

Moshe Shoham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9420995
    Abstract: A robotic system for flexible needle steering under ultrasound imaging. A robot is used to steer the needle along a predetermined curved trajectory by maneuvering the needle base. The needle tip position is detected by an ultrasound sensor and the tracking error of the needle tip from a predetermined needle path is input to a controller which solves the inverse kinematic based on the needle position, and the needle and tissue properties. The control algorithm uses a novel method to detect the elastic properties of the tissue by analyzing tissue motion at the region in front of the needle tip. The inverse kinematic solution may be performed on a model of the needle as a flexible beam having laterally connected virtual springs to simulate lateral forces exerted by the tissue elasticity. The system is able to direct the needle to a target within the tissue while circumventing forbidden regions.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: August 23, 2016
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LTD.
    Inventors: Zipi Neubach, Moshe Shoham
  • Patent number: 9393389
    Abstract: A self cleaning inlet head for use on a shunt. The head has a tube with openings disposed in predetermined positions in its wall, and a cleaning element installed inside the tube. The cleaning element may comprise a central shaft with a number of bristles protruding therefrom, preferably in locations substantially identical to the positions of the openings in the wall of the tube. Mutual vibratory motion between the cleaning element and the tube causes at least some of the bristles to enter the openings, thereby keeping them clear, and preventing tissue growth into them. The vibratory motion may be generated by the action of an external field on a responsive part of the cleaning element, such as an external magnetic field operating on a magnetic or magnetized part of the cleaning element or the bristles. Alternatively, the external field may be an ultrasound field operating on the bristles.
    Type: Grant
    Filed: June 19, 2011
    Date of Patent: July 19, 2016
    Assignee: Technion Research & Development Foundation Ltd.
    Inventors: Or Samoocha, Menashe Zaaroor, Moshe Shoham
  • Publication number: 20150367101
    Abstract: A self-propelled device for locomotion through a lumen, comprising a set of serially arranged inflatable chambers, the end ones of which expand at least radially when inflated. Connecting passages provide fluid communication between each pair of adjacent chambers. A fluid source is attached to one of the end chambers. The connecting passages are such that the fluid inflates the chambers in a sequence, beginning with the chamber closest to the source, and ending with the chamber furthest from the source. The same sequence occurs when the chambers deflate, beginning with the chamber closest to the source, and ending with the chamber furthest from the source. The fluid source can either be a fluid supply tube, extending to a supply outside the lumen, or it can be built-in and carried by the device. The device can crawl either along the lumen wall or on an inserted guide wire.
    Type: Application
    Filed: June 22, 2015
    Publication date: December 24, 2015
    Inventors: Moshe Shoham, Noam Hassidov, Daniel Glozman
  • Patent number: 9125556
    Abstract: Systems and methods for performing robotic endoscopic surgical procedures, according to a surgical plan prepared on a preoperative set of three dimensional images. The system comprises a surgical robot whose coordinate system is related to that of fluoroscope images generated intraoperatively, by using a three dimensional target having radio-opaque markers, attached in a predetermined manner to the robot or to another element to which the robot is attached, such as the spinal bridge or an attachment clamp. The robot is mounted directly or indirectly on a bone of the patient, thereby nullifying movement of the bone, or a bone tracking system may be utilized. The coordinate system of the intraoperative fluoroscope images may be related to the preoperative images, by comparing anatomical features between both image sets. This system and method enables the endoscope to be directed by the robot along the exact planned path, as determined by the surgeon.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: September 8, 2015
    Assignee: MAZOR ROBOTICS LTD.
    Inventors: Eli Zehavi, Moshe Shoham
  • Publication number: 20150209056
    Abstract: Methods and apparatus for detecting or predicting surgical tool-bone skiving are disclosed. In some embodiments, the surgical tool is movably and/or snugly disposed within a guide-sleeve. In some embodiments, a magnitude of a lateral force between the surgical tool and the guide-sleeve is measured (e.g. by a force sensor or strain sensor). The present or future skiving may be detected or predicted according to the magnitude of the lateral force. In some embodiments, an alert signal is generated in response to the detecting or predicting of the skiving.
    Type: Application
    Filed: December 8, 2014
    Publication date: July 30, 2015
    Inventors: Moshe SHOHAM, Eli ZEHAVI
  • Publication number: 20150196326
    Abstract: A robotic system for performing minimally invasive spinal stabilization, using two screws inserted in oblique trajectories from an inferior vertebra pedicle into the adjacent superior vertebra body. The procedure is less traumatic than such procedures performed using open back surgery, by virtue of the robot used to guide the surgeon along a safe trajectory, avoiding damage to nerves surrounding the vertebrae. The robot arm is advantageous since no access is provided in a minimally invasive procedure for direct viewing of the operation site, and the accuracy required for oblique entry can readily be achieved only using robotic control. This robotic system also obviates the need for a large number of fluoroscope images to check drill insertion position relative to the surrounding nerves. Disc cleaning tools with flexible wire heads are also described. The drilling trajectory is determined by comparing fluoroscope images to preoperative images showing the planned path.
    Type: Application
    Filed: March 10, 2015
    Publication date: July 16, 2015
    Inventors: Yossef BAR, Eli ZEHAVI, Isidore LIEBERMAN, Moshe SHOHAM
  • Patent number: 9061118
    Abstract: A self-propelled device for locomotion through a lumen, comprising a set of serially arranged inflatable chambers, the end ones of which expand at least radially when inflated. Connecting passages provide fluid communication between each pair of adjacent chambers. A fluid source is attached to one of the end chambers. The connecting passages are such that the fluid inflates the chambers in a sequence, beginning with the chamber closest to the source, and ending with the chamber furthest from the source. The same sequence occurs when the chambers deflate, beginning with the chamber closest to the source, and ending with the chamber furthest from the source. The fluid source can either be a fluid supply tube, extending to a supply outside the lumen, or it can be built-in and carried by the device. The device can crawl either along the lumen wall or on an inserted guide wire.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: June 23, 2015
    Assignee: Technion Research & Development Foundation Ltd.
    Inventors: Moshe Shoham, Noam Hassidov, Daniel Glozman
  • Patent number: 9056015
    Abstract: A spinal intervertebral support implant, for fusion or for dynamic stabilization purposes. A rod, preferably in the form of a screw, is inserted obliquely from the pedicle of an inferior vertebra into the body of a neighboring superior vertebra, through the disc space. The rod can be anchored into the body of the superior vertebra by means of a force fit or a screw thread. A pile of elements is disposed on the rod in the disc space like a pile of washers, so that the compression load between vertebrae is carried partly by these elements. These elements can be inserted through the bore through which the rod was inserted in a tightly folded configuration, and deployed into their washer-like form only when in position in the intervertebral space, such that there is no need for any additional incisions.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: June 16, 2015
    Assignee: MAZOR ROBOTICS LTD.
    Inventors: Eli Zehavi, Moshe Shoham
  • Publication number: 20150150523
    Abstract: A method verifying the position of a surgically inserted orthopedic insert. A preoperative three dimensional image data set of the surgical site is generated, showing the bone into which the insert is to be inserted. During the insertion procedure, a series of intraoperative two-dimensional fluoroscope images are generated, each at a known pose relative to the bone, showing the insert during or after insertion into the bone. The 3-D position of the insert is determined in an intraoperative three dimensional image data set reconstructed from the series of intraoperative 2-D fluoroscope images. The reconstructed intraoperative 3-D image data set is registered with the preoperative three dimensional image data set, such as by comparison of imaged anatomical features. Once this registration is achieved, the determined 3-D position of the insert is used to implant a virtual image of the insert into the preoperative three dimensional image data set.
    Type: Application
    Filed: May 21, 2013
    Publication date: June 4, 2015
    Inventors: Yael Sirpad, Eli Zehavi, Moshe Shoham, Leonid Kleyman
  • Patent number: 9044190
    Abstract: A system and method for generating CT-type three dimensional imaging information from a conventional C-arm fluoroscope system. This enables the adaptation of widely used C-arm installations to provide CT-type information. The system uses a three dimensional target disposing in a fixed position relative to the subject, and obtains a sequence of video images of a region of interest of a subject while the C-arm is moved manually or by a scanning motor. Images from the video sequence are analyzed to determine the pose of the C-arm relative to the subject by analysis of the image patterns of the target. Images are selected from the video sequence according to predetermined criteria. A set of two-dimensional image data with associated positional data is obtained, which is used to reconstruct a three dimensional volumetric set of imaging data of the region of interest of the subject.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: June 2, 2015
    Assignee: MAZOR ROBOTICS LTD.
    Inventors: Joseph Rubner, Eli Zehavi, Leonid Kleyman, Moshe Shoham
  • Publication number: 20150112344
    Abstract: A robot-guided system to assist orthopaedic surgeons in performing orthopaedic surgical procedures on pre-positioned inserts, including for the fixation of bone fractures, and especially for use in long bone distal intramedullary locking procedures. The system provides a mechanical guide for drilling the holes for distal screws in intramedullary nailing surgery. The drill guide is automatically positioned by the robot relative to the distal locking nail holes, using data derived from only a small number of X-ray fluoroscopic images. The system allows the performance of the locking procedure without trial and error, thus enabling the procedure to be successfully performed by less experienced surgeons, reduces exposure of patient and operating room personnel to radiation, shortens the intra-operative time, and thus reduces post-operative complications.
    Type: Application
    Filed: September 15, 2014
    Publication date: April 23, 2015
    Inventors: Moshe SHOHAM, Leo JOSKOWICZ, Charles MILGROM, Ziv YANIV, Ariel SIMKIN
  • Patent number: 8992580
    Abstract: A robotic system for performing minimally invasive spinal stabilization, using two screws inserted in oblique trajectories from an inferior vertebra pedicle into the adjacent superior vertebra body. The procedure is less traumatic than such procedures performed using open back surgery, by virtue of the robot used to guide the surgeon along a safe trajectory, avoiding damage to nerves surrounding the vertebrae. The robot arm is advantageous since no access is provided in a minimally invasive procedure for direct viewing of the operation site, and the accuracy required for oblique entry can readily be achieved only using robotic control. This robotic system also obviates the need for a large number of fluoroscope images to check drill insertion position relative to the surrounding nerves. Disc cleaning tools with flexible wire heads are also described. The drilling trajectory is determined by comparing fluoroscope images to preoperative images showing the planned path.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: March 31, 2015
    Assignee: Mazor Robotics Ltd.
    Inventors: Yossef Bar, Eli Zehavi, Isador Lieberman, Moshe Shoham
  • Publication number: 20140316436
    Abstract: A robotic surgical system incorporating a surgical robot attached to a patient's bone by an attachment member, such that motion of the bone induces corresponding motion of the robot, maintaining the robot/bone positional relationship. The robot is supported on a mechanical mounting member attached through a controlled joint to a bed-mounted base element. The controlled joint can alternatively enable the mechanical mounting member to move freely relative to the base element, or its position can be controlled by signal inputs adapted to prevent excessive force being applied in the system. Two modes of operation are available (i) free motion in which the control system is decoupled from the mounting member, which rides freely with patient bone motion, and (ii) servo-controlled motion, in which drive mechanisms control the joint motion to prevent application of excessive force on the patient bone or attachment member.
    Type: Application
    Filed: December 5, 2012
    Publication date: October 23, 2014
    Applicant: Mazor Robotics Ltd.
    Inventors: Yossef Bar, Eli Zehavi, Moshe Shoham, David Groberman
  • Patent number: 8838205
    Abstract: A robot-guided system to assist orthopaedic surgeons in performing orthopaedic surgical procedures on pre-positioned inserts, including for the fixation of bone fractures, and especially for use in long bone distal intramedullary locking procedures. The system provides a mechanical guide for drilling the holes for distal screws in intramedullary nailing surgery. The drill guide is automatically positioned by the robot relative to the distal locking nail holes, using data derived from only a small number of X-ray fluoroscopic images. The system allows the performance of the locking procedure without trial and error, thus enabling the procedure to be successfully performed by less experienced surgeons, reduces exposure of patient and operating room personnel to radiation, shortens the intra-operative time, and thus reduces post-operative complications.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: September 16, 2014
    Assignee: Mazor Robotics Ltd.
    Inventors: Moshe Shoham, Leo Joskowicz, Charles Milgrom, Ziv Yaniv, Ariel Simkin
  • Publication number: 20140257165
    Abstract: A method and a kit for the prevention of venous stenosis associated with the use of hemodialysis AV shunts. The kit may use a bifurcated needle for providing access to the shunt or blood vessel. One of the arms is used for returning the blood to the subject after dialysis treatment, while the other arm is used for inserting a device for cleaning the vein, the device being either an autonomous crawling device, or a passive tethered device moved down the vein by the blood flow. The autonomous crawling device may be a series of sequentially inflatable chambers, the stenosis being cleared by pressure from the outer walls of the chambers when inflated and moved. The passive device may be an element having a flexible disc-like structure, whose flexible peripheral edge slides along the inner walls of the blood vessel, compressing or clearing the material attached thereto.
    Type: Application
    Filed: September 27, 2012
    Publication date: September 11, 2014
    Applicant: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LTD.
    Inventors: Adi Shechtman, Moshe Shoham, Harel Gadot
  • Patent number: 8790246
    Abstract: A self-propelled device for locomotion through a lumen, comprising a set of serially arranged inflatable chambers, and incorporating a number of novel aspects. To enable easy insertion and use, the rigidity of the device is increased by means of rigid inserts in the balloons, or by use of stiff springs between segments. The working channel can be attached to the distal chamber of the device, such that it is pulled from the leading end of the device during inflation, rather than being pulled from the trailing end of the device during deflation. Lumen wall inspection or treatment facilities are enabled by means of a camera or treatment arm mounted between two distally positioned balloons, the device is able to provide observation capabilities to the lumen wall, yet without becoming excessively dirty by exposure to the front end of the device, as in prior art camera units.
    Type: Grant
    Filed: April 28, 2013
    Date of Patent: July 29, 2014
    Assignee: Technion Research And Development Foundation Ltd.
    Inventors: Noam Hassidov, Daniel Glozman, Moshe Shoham
  • Publication number: 20140180392
    Abstract: A device for use in reducing or preventing the occurrence of restenosis following procedures such as PTCA, in which a stent is used to hold a bodily lumen open. The device comprises a two layered stent, one lying within the other. Both stent layers have an open weave structure, such that they can expand to the correct dimensions after implantation. The outer stent layer is static and grips the inner wall of the lumen in which it is deployed in the usual manner. The inner layer stent is constructed such that it can be vibrated relative to the outer static stent layer. The inner layer stent may be made of a material which can be vibrated from an external source, such as a ferromagnetic material. This vibration prevents restenosis of the treated lumen. Alternatively, a vibrator, such as a piezoelectric device, can be installed on the inner stent layer.
    Type: Application
    Filed: March 28, 2012
    Publication date: June 26, 2014
    Applicant: TECHNION RESEARCH & DEVELOPEMENT FOUNDATION LTD.
    Inventors: Moshe Shoham, Amit Reches, Lucy Leshansky, Michael Groskop, Shachar Millis, Yishai Pentanovich
  • Publication number: 20140142429
    Abstract: A robotic system for flexible needle steering under ultrasound imaging. A robot is used to steer the needle along a predetermined curved trajectory by maneuvering the needle base. The needle tip position is detected by an ultrasound sensor and the tracking error of the needle tip from a predetermined needle path is input to a controller which solves the inverse kinematic based on the needle position, and the needle and tissue properties. The control algorithm uses a novel method to detect the elastic properties of the tissue by analyzing tissue motion at the region in front of the needle tip. The inverse kinematic solution may be performed on a model of the needle as a flexible beam having laterally connected virtual springs to simulate lateral forces exerted by the tissue elasticity. The system is able to direct the needle to a target within the tissue while circumventing forbidden regions.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Applicant: Technion Research & Development Foundation Ltd.
    Inventors: Zipi NEUBACH, Moshe SHOHAM
  • Patent number: 8663130
    Abstract: A robotic system for flexible needle steering under ultrasound imaging. A robot is used to steer the needle along a predetermined curved trajectory by maneuvering the needle base. The needle tip position is detected by an ultrasound sensor and the tracking error of the needle tip from a predetermined needle path is input to a controller which solves the inverse kinematic based on the needle position, and the needle and tissue properties. The control algorithm uses a novel method to detect the elastic properties of the tissue by analyzing tissue motion at the region in front of the needle tip. The inverse kinematic solution may be performed on a model of the needle as a flexible beam having laterally connected virtual springs to simulate lateral forces exerted by the tissue elasticity. The system is able to direct the needle to a target within the tissue while circumventing forbidden regions.
    Type: Grant
    Filed: May 31, 2009
    Date of Patent: March 4, 2014
    Assignee: Technion Researh & Development Foundation Ltd.
    Inventors: Zipi Neubach, Moshe Shoham
  • Publication number: 20140025088
    Abstract: A robotic device for performing intracranial procedures, comprising a baseplate for mounting on the subject's skull and a rotatable base element rotating on the baseplate. The rotatable base element has a central opening through which a cannulated needle can protrude such that it can rotate around an axis perpendicular to the baseplate. This cannulated needle is robotically controlled to provide motion into and out of the subject's skull. A flexible needle is disposed coaxially within the cannulated needle, and it is controlled to move into and out of a non-axial aperture in the distal part of the cannulated needle. Coordinated control of the insertion motion of the cannulated and flexible needles, and rotation of the combined cannulated/flexible needle assembly enables access to be obtained to a volume of a region of the brain having lateral dimensions substantially larger than the width of the cannulated needle.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 23, 2014
    Inventors: DAVID ZARROUK, MOSHE SHOHAM, MENASHE ZAAROOR, Hadas Ziso