Patents by Inventor Mostafa Azizi
Mostafa Azizi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12155365Abstract: A front-end module may include an acoustic wave filter with a first and second interdigital transducer electrode, and a low noise amplifier (LNA) that converts a differential input to a single-ended output with respect to ground. The first interdigital transducer electrode may be single-ended with a first input bus bar configured to receive an input signal and a second input bus bar connected to ground. The second interdigital transducer electrode may be differential with a first output bus bar connected to a first output terminal and a second output bus bar connected to a second output terminal. The LNA may have a differential input connected to the acoustic wave filter, a first input transistor that receives a first signal from the first output terminal of the acoustic wave filter, and a second input transistor that receives a second signal from the second output terminal of the acoustic wave filter.Type: GrantFiled: March 8, 2023Date of Patent: November 26, 2024Assignee: Skyworks Solutions, Inc.Inventor: Mostafa Azizi
-
Publication number: 20240305262Abstract: Apparatus and methods for phase shifters with switched transmission line loads are provided herein. In certain embodiments, a phase shifter includes a first port, a first controllable reflective load, a second port, a second controllable reflective load, and a pair of coupled lines that are electromagnetically coupled to one another. The pair of coupled lines includes a first conductive line between the first port and the first controllable reflective load and a second conductive line between the second controllable reflective load and the second port. At least one of the first controllable reflective load or the second controllable reflective load includes a switched transmission line load.Type: ApplicationFiled: May 21, 2024Publication date: September 12, 2024Inventors: Mostafa Azizi, Hassan Sarbishaei
-
Patent number: 12028038Abstract: Apparatus and methods for phase shifters with switched transmission line loads are provided herein. In certain embodiments, a phase shifter includes a first port, a first controllable reflective load, a second port, a second controllable reflective load, and a pair of coupled lines that are electromagnetically coupled to one another. The pair of coupled lines includes a first conductive line between the first port and the first controllable reflective load and a second conductive line between the second controllable reflective load and the second port. At least one of the first controllable reflective load or the second controllable reflective load includes a switched transmission line load.Type: GrantFiled: November 16, 2021Date of Patent: July 2, 2024Assignee: Skyworks Solutions, Inc.Inventors: Mostafa Azizi, Hassan Sarbishaei
-
Patent number: 11791800Abstract: Apparatus and methods for phase shifting are provided herein. In certain embodiments, a phase shifter includes a first port, a first controllable reflective load, a second port, a second controllable reflective load, and a pair of coupled lines that are electromagnetically coupled to one another. The pair of coupled lines includes a first conductive line between the first port and the first controllable reflective load and a second conductive line between the second controllable reflective load and the second port. At least one of the first controllable reflective load or the second controllable reflective load includes a switched transmission line load.Type: GrantFiled: November 16, 2021Date of Patent: October 17, 2023Assignee: Skyworks Solutions, Inc.Inventors: Mostafa Azizi, Hassan Sarbishaei
-
Publication number: 20230291378Abstract: A front-end module may include an acoustic wave filter with a first and second interdigital transducer electrode, and a low noise amplifier (LNA) that converts a differential input to a single-ended output with respect to ground. The first interdigital transducer electrode may be single-ended with a first input bus bar configured to receive an input signal and a second input bus bar connected to ground. The second interdigital transducer electrode may be differential with a first output bus bar connected to a first output terminal and a second output bus bar connected to a second output terminal. The LNA may have a differential input connected to the acoustic wave filter, a first input transistor that receives a first signal from the first output terminal of the acoustic wave filter, and a second input transistor that receives a second signal from the second output terminal of the acoustic wave filter.Type: ApplicationFiled: March 8, 2023Publication date: September 14, 2023Inventor: Mostafa Azizi
-
Publication number: 20230112435Abstract: A fully differential power amplifier has an input matching network, a plurality of stacked transistors connected by a plurality of inter stack networks (ISNs), and an output matching network for amplification and conditioning of signal components. The differential amplifier uses a modified cascode FET topology with the FETs connected by gate decoupling capacitors to strongly attenuate common mode oscillations and eliminate the need for a source degeneration inductor or matching transformer. Inter stack networks provide signal conditioning and filtering between amplification stages to improve amplifier performance metrics such as long-term reliability, output power, and efficiency.Type: ApplicationFiled: October 12, 2022Publication date: April 13, 2023Inventors: Mehdi Naseri Ali Abadi, Hassan Sarbishaei, Mostafa Azizi
-
Patent number: 11626855Abstract: A front-end module may include an acoustic wave filter with a first and second interdigital transducer electrode, and a low noise amplifier (LNA) that converts a differential input to a single-ended output with respect to ground. The first interdigital transducer electrode may be single-ended with a first input bus bar configured to receive an input signal and a second input bus bar connected to ground. The second interdigital transducer electrode may be differential with a first output bus bar connected to a first output terminal and a second output bus bar connected to a second output terminal. The LNA may have a differential input connected to the acoustic wave filter, a first input transistor that receives a first signal from the first output terminal of the acoustic wave filter, and a second input transistor that receives a second signal from the second output terminal of the acoustic wave filter.Type: GrantFiled: November 6, 2020Date of Patent: April 11, 2023Assignee: Skyworks Solutions, Inc.Inventor: Mostafa Azizi
-
Patent number: 11616485Abstract: A front-end module may include an acoustic wave filter with a first and second interdigital transducer electrode. The first interdigital transducer electrode may be single-ended with a first input bus bar that receives an input signal and a second input bus bar connected to ground. The second interdigital transducer electrode may be differential with a first output bus bar connected to a first output terminal and a second output bus bar connected to a second output terminal. The front-end module may include a low noise amplifier (LNA) that outputs a differential signal via a differential output and has a differential input connected to the acoustic wave filter. The LNA may include a first input transistor that receives a first signal from the first output terminal of the acoustic wave filter and a second input transistor that receives a second signal from the second output terminal of the acoustic wave filter.Type: GrantFiled: November 6, 2020Date of Patent: March 28, 2023Assignee: Skyworks Solutions, Inc.Inventor: Mostafa Azizi
-
Publication number: 20220200560Abstract: Apparatus and methods for phase shifters with switched transmission line loads are provided herein. In certain embodiments, a phase shifter includes a first port, a first controllable reflective load, a second port, a second controllable reflective load, and a pair of coupled lines that are electromagnetically coupled to one another. The pair of coupled lines includes a first conductive line between the first port and the first controllable reflective load and a second conductive line between the second controllable reflective load and the second port. At least one of the first controllable reflective load or the second controllable reflective load includes a switched transmission line load.Type: ApplicationFiled: November 16, 2021Publication date: June 23, 2022Inventors: Mostafa Azizi, Hassan Sarbishaei
-
Publication number: 20220200577Abstract: Apparatus and methods for phase shifting are provided herein. In certain embodiments, a phase shifter includes a first port, a first controllable reflective load, a second port, a second controllable reflective load, and a pair of coupled lines that are electromagnetically coupled to one another. The pair of coupled lines includes a first conductive line between the first port and the first controllable reflective load and a second conductive line between the second controllable reflective load and the second port. At least one of the first controllable reflective load or the second controllable reflective load includes a switched transmission line load.Type: ApplicationFiled: November 16, 2021Publication date: June 23, 2022Inventors: Mostafa Azizi, Hassan Sarbishaei
-
Publication number: 20220190803Abstract: Baluns with integrated matching networks are provided herein. In certain embodiments, a balun structure includes a first pair of coupled lines, a second pair of coupled lines and a transmission line. Additionally, a first port of the balun is connected to a reference voltage by way of a first line of the first pair of coupled lines, the transmission line, and a first line of the second pair of coupled lines. Furthermore, a second port of the balun is connected to the reference voltage by way of a second line of the first pair of coupled lines, while a third port of the balun is connected to the reference voltage by way of a second line of the second pair of coupled lines. The first port serves as an unbalanced signal terminal, while the second port and the third port serve as positive and negative signal terminals.Type: ApplicationFiled: November 16, 2021Publication date: June 16, 2022Inventors: Mostafa Azizi, Mehdi Naseri Ali Abadi, Hassan Sarbishaei
-
Publication number: 20210143795Abstract: A front-end module may include an acoustic wave filter with a first and second interdigital transducer electrode. The first interdigital transducer electrode may be single-ended with a first input bus bar that receives an input signal and a second input bus bar connected to ground. The second interdigital transducer electrode may be differential with a first output bus bar connected to a first output terminal and a second output bus bar connected to a second output terminal. The front-end module may include a low noise amplifier (LNA) that outputs a differential signal via a differential output and has a differential input connected to the acoustic wave filter. The LNA may include a first input transistor that receives a first signal from the first output terminal of the acoustic wave filter and a second input transistor that receives a second signal from the second output terminal of the acoustic wave filter.Type: ApplicationFiled: November 6, 2020Publication date: May 13, 2021Inventor: Mostafa Azizi
-
Publication number: 20210143789Abstract: A front-end module may include an acoustic wave filter with a first and second interdigital transducer electrode, and a low noise amplifier (LNA) that converts a differential input to a single-ended output with respect to ground. The first interdigital transducer electrode may be single-ended with a first input bus bar configured to receive an input signal and a second input bus bar connected to ground. The second interdigital transducer electrode may be differential with a first output bus bar connected to a first output terminal and a second output bus bar connected to a second output terminal. The LNA may have a differential input connected to the acoustic wave filter, a first input transistor that receives a first signal from the first output terminal of the acoustic wave filter, and a second input transistor that receives a second signal from the second output terminal of the acoustic wave filter.Type: ApplicationFiled: November 6, 2020Publication date: May 13, 2021Inventor: Mostafa Azizi
-
Patent number: D1050110Type: GrantFiled: February 8, 2022Date of Patent: November 5, 2024Assignee: Boundless EC US LLCInventors: Joséphine Nehme Azizi, Khalid Mostafa Ali Elfeky, Ivan Ariel Sferco, Wassim Abdel Wahab Shoucair