Patents by Inventor Motohiro Horiguchi

Motohiro Horiguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180347922
    Abstract: Disclosed is an aluminum composite material including an aluminum alloy material containing magnesium, and a bonding material formed by brazing using a flux, the bonding material being adapted to bond the aluminum alloy material thereto. In the aluminum composite material, the bonding material contains a magnesium-containing compound other than KMgF3 and MgF2. The present invention provides an aluminum composite material with satisfactory brazeability to an aluminum alloy material containing magnesium, a heat exchanger including the aluminum composite material, and a flux suitable for use in braze.
    Type: Application
    Filed: August 8, 2018
    Publication date: December 6, 2018
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Nobuhiro KOBAYASHI, Motohiro HORIGUCHi, Koichi SAKAMOTO, Toshiki UEDA, Shimpei KIMURA, Takahiro IZUMi
  • Patent number: 10086480
    Abstract: Disclosed is a flux composition for use in brazing of an aluminum alloy material and includes a flux component [A] containing KAlF4; and a fluoride [B] containing an element other than Group 1 elements and Group 2 elements and containing no potassium (K). Also disclosed is a brazing sheet which includes an aluminum alloy core; a filler material lying on or over at least one side of the core; and a flux layer lying on or over one side of the filler material and including the flux composition.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: October 2, 2018
    Assignees: Kobe Steel, Ltd., DENSO CORPORATION
    Inventors: Nobuhiro Kobayashi, Motohiro Horiguchi, Koichi Sakamoto, Toshiki Ueda, Shimpei Kimura, Takahiro Izumi
  • Publication number: 20150211816
    Abstract: Disclosed is an aluminum composite material including an aluminum alloy material containing magnesium, and a bonding material formed by brazing using a flux, the bonding material being adapted to bond the aluminum alloy material thereto. In the aluminum composite material, the bonding material contains a magnesium-containing compound other than KMgF3 and MgF2. The present invention provides an aluminum composite material with satisfactory brazeability to an aluminum alloy material containing magnesium, a heat exchanger including the aluminum composite material, and a flux suitable for use in braze.
    Type: Application
    Filed: August 14, 2013
    Publication date: July 30, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Nobuhiro Kobayashi, Motohiro Horiguchi, Koichi Sakamoto, Toshiki Ueda, Shimpei Kimura, Takahiro Izumi
  • Publication number: 20150047745
    Abstract: Disclosed is a flux composition for use in brazing of an aluminum alloy material and includes a flux component [A] containing KAlF4; and a fluoride [B] containing an element other than Group 1 elements and Group 2 elements and containing no potassium (K). Also disclosed is a brazing sheet which includes an aluminum alloy core; a filler material lying on or over at least one side of the core; and a flux layer lying on or over one side of the filler material and including the flux composition.
    Type: Application
    Filed: October 17, 2012
    Publication date: February 19, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Nobuhiro Kobayashi, Motohiro Horiguchi, Koichi Sakamoto, Toshiki Ueda, Shimpei Kimura, Takahiro Izumi
  • Publication number: 20130059162
    Abstract: Disclosed are: a flux composition which is used for brazing of a magnesium-containing aluminum alloy material, suppresses the formation of high-melting compounds, provides better wettability, and thereby exhibits better brazability even applied in a small mass of coating; and a brazing sheet using the flux composition. The flux composition for brazing of a magnesium-containing aluminum alloy material includes a flux component [A] containing fluorides as principal components; and an additive [B] being at least one selected from the group consisting of CeF3, BaF2, and ZnSO4. The flux component [A] preferably contains KF in a content of 40 percent by mass or more and 60 percent by mass or less; and AlF3 in a content of 40 percent by mass or more and 60 percent by mass or less.
    Type: Application
    Filed: August 24, 2012
    Publication date: March 7, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Nobuhiro KOBAYASHI, Motohiro Horiguchi, Kazutaka Kunii, Toshiki Ueda, Shimpei Kimura
  • Publication number: 20130047787
    Abstract: Disclosed is a carbon-material-containing iron oxide briquette composition that, when obtaining direct reduced iron by heating in a moving hearth reduction furnace, does not turn into powder in the furnace leading to an accumulation of powder, and reliably prevents the obtained direct reduced iron from turning into powder during conveyance, decreasing yield. Further disclosed are a method for producing same, and a method for producing direct reduced iron using same. The carbon-material-containing iron oxide briquette composition is characterized by: the solidus temperature that is of an Al2O3-CaO—SiO2 ternary system slag in said briquette composition and that is determined by the amount of contained Al2O3, CaO, and SiO2 being no greater than 1300 DEG C.
    Type: Application
    Filed: March 24, 2011
    Publication date: February 28, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Motohiro Horiguchi, Kazutaka Kunii
  • Patent number: 8273292
    Abstract: The present invention provides a steel for machine and structural use which sustains mechanical properties such as strength by reducing S content, and exerts excellent machinability (in particular, tool life) in both of intermittent cutting with HSS tools and continuous cutting with carbide tools. The invention relates to a steel for machine and structural use which contains an oxide inclusion containing, wherein a total mass of an average composition of the oxide inclusions is 100%: CaO: 10 to 55 mass %; SiO2: 20 to 70 mass %; Al2O3: more than 0 and 35 mass % or less; MgO: more than 0 and 20 mass % or less; MnO: more than 0 and 5 mass % or less; and one or more members selected from the group consisting of Li2O, Na2O, K2O, BaO, SrO and TiO2: 0.5 to 20 mass % in total.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: September 25, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Koichi Sakamoto, Motohiro Horiguchi, Shogo Murakami, Hiroshi Yaguchi, Shinsuke Masuda, Koichi Akazawa
  • Patent number: 8192565
    Abstract: The present invention provides a steel for machine and structural use which is capable of maintaining mechanical characteristics such as strength by reducing a S content as well as of exhibiting excellent machinability (particularly tool life) in intermittent cutting (such as hobbing) with the high speed tool, and a method useful for producing the steel for machine and structural use. The steel for machine and structural use according to the invention secures 0.002% or more of solute N in the steel and has a chemical composition which is appropriately adjusted and satisfies a relationship of the following expression (1): (0.1×[Cr]+[Al])/[O]?150 . . . (1), in which [Cr], [Al], and [0] represent a Cr content (mass %), an Al content (mass %), and an O content (mass %), respectively.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: June 5, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Tomokazu Masuda, Takehiro Tsuchida, Masaki Shimamoto, Motohiro Horiguchi, Shinsuke Masuda, Koichi Akazawa, Shogo Murakami, Mutsuhisa Nagahama, Hiroshi Yaguchi, Koichi Sakamoto
  • Publication number: 20110229363
    Abstract: The present invention provides a steel for machine and structural use which sustains mechanical properties such as strength by reducing S content, and exerts excellent machinability (in particular, tool life) in both of intermittent cutting with HSS tools and continuous cutting with carbide tools. The invention relates to a steel for machine and structural use which contains an oxide inclusion containing, wherein a total mass of an average composition of the oxide inclusions is 100%: CaO: 10 to 55 mass %; SiO2: 20 to 70 mass %; Al2O3: more than 0 and 35 mass % or less; MgO: more than 0 and 20 mass % or less; MnO: more than 0 and 5 mass % or less; and one or more members selected from the group consisting of Li2O, Na2O, K2O, BaO, SrO and TiO2: 0.5 to 20 mass % in total.
    Type: Application
    Filed: January 20, 2009
    Publication date: September 22, 2011
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Koichi Sakamoto, Motohiro Horiguchi, Shogo Murakami, Hiroshi Yaguchi, Shinsuke Masuda, Koichi Akazawa
  • Publication number: 20100193090
    Abstract: The present invention provides a steel for machine and structural use which is capable of maintaining mechanical characteristics such as strength by reducing a S content as well as of exhibiting excellent machinability (particularly tool life) in intermittent cutting (such as hobbing) with the high speed tool, and a method useful for producing the steel for machine and structural use. The steel for machine and structural use according to the invention secures 0.002% or more of solute N in the steel and has a chemical composition which is appropriately adjusted and satisfies a relationship of the following expression (1): (0.1×[Cr]+[Al])/[O]?150 . . . (1), in which [Cr], [Al], and [0] represent a Cr content (mass %), an Al content (mass %), and an O content (mass %), respectively.
    Type: Application
    Filed: June 23, 2008
    Publication date: August 5, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tomokazu Masuda, Takehiro Tsuchida, Masaki Shimamoto, Motohiro Horiguchi, Shinsuke Masuda, Koichi Akazawa, Shogo Murakami, Mutsuhisa Nagahama, Hiroshi Yaguchi, Koichi Sakamoto