Patents by Inventor Motohisa Miyafuji

Motohisa Miyafuji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030196736
    Abstract: The present invention provides a copper alloy, that includes an Sn content of 3 wt % to less than 4 wt %; a Ni content of 0.5 wt % to less than or equal to 1.0 wt %; a Zn content of 0.05 wt % to less than or equal to 5.0 wt %; and Cu and unavoidable impurities combined as the balance; wherein a total content of insolubles is less than or equal to 0.02 wt %. The present invention also relates to a method for producing the above-described copper alloy, which includes holding a copper alloy at a temperature ranging from 550 to 700° C. for a time period ranging from 5 sec to less than or equal to 5 min in the course of cold working; subsequently heat treating the copper alloy to cool the copper alloy to room temperature at a cooling speed of 5° C./sec or higher; subsequently cold working the copper alloy to a target dimension; and stabilizing annealing the copper alloy at a temperature ranging from 325 to 450° C. and a time period ranging from 5 sec to less than or equal to 180 min.
    Type: Application
    Filed: April 7, 2003
    Publication date: October 23, 2003
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Motohisa Miyafuji
  • Publication number: 20030047259
    Abstract: The present invention provides a copper alloy, that includes an Sn content of 3 wt % to less than 4 wt %; a Ni content of 0.5 wt % to less than or equal to 1.0 wt %; a Zn content of 0.05 wt % to less than or equal to 5.0 wt %; and Cu and unavoidable impurities combined as the balance; wherein a total content of insolubles is less than or equal to 0.02 wt %. The present invention also relates to a method for producing the above-described copper alloy, which includes holding a copper alloy at a temperature ranging from 550 to 700° C. for a time period ranging from 5 sec to less than or equal to 5 min in the course of cold working; subsequently heat treating the copper alloy to cool the copper alloy to room temperature at a cooling speed of 5 ° C./sec or higher; subsequently cold working the copper alloy to a target dimension; and stabilizing annealing the copper alloy at a temperature ranging from 325 to 450° C. and a time period ranging from 5 sec to less than or equal to 180 min.
    Type: Application
    Filed: August 26, 2002
    Publication date: March 13, 2003
    Applicant: Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.)
    Inventor: Motohisa Miyafuji
  • Patent number: 6313064
    Abstract: A copper alloy comprising 0.1-7.3% of titanium and optionally comprising one or more of zinc, silicon and silver in amounts of 0.001-10%, 0.001-3% and 0.001-1%, respectively, wherein its surface layer contains an oxide containing titanium. This copper alloy exhibits sterilizing effect based on copper and antibacterial effect based on optical catalyst function resulting from the oxide which contains titanium dispersed in the surface layer. The oxide containing titanium can be produced by heating the copper alloy which has the above-mentioned composition and is produced in the usual manner to 200-800° C. to oxidize titanium preferentially. In the case that zinc and silicon are contained, these elements are also preferentially oxidized by the heating, so as to produce oxides. Thus, zinc exhibits antibacterial effect and sterilizing effect. Silicon exhibits hydrophilicity. Silver exhibits sterilizing effect.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: November 6, 2001
    Assignee: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Motohisa Miyafuji, Yoshinobu Tsuzaki, Sadako Yamada, Takenori Nakayama, Wataru Urushihara
  • Patent number: 6202703
    Abstract: The copper alloy tube disclosed here contains 0.05 to 1.5 wt. % of Mn and deoxidized copper containing oxygen concentration at 100 ppm or less. At least one element selected from a group of elements comprising P, B, Li, Pb and Sb can be added at the amount of 0.20 wt. % or less in total. At least one element selected from another group of elements comprising Cr, Ti, Zr, Al and Si also can be added at the amount of 0.50 wt. % or less in total. Further, at least one element selected from other group of elements comprising Mg, Fe, Co, Ag, In and As can be added at the amount of 1.0 wt. % or less in total. Furthermore, at least one element selected from a group of elements comprising Zn and Ni can be added at the amount 5.0 wt. % or less in total. Thereby, an corrosion resistant copper alloy tube having better corrosion resistant property against the ant-nest type corrosion which is specific problem for refrigerant tubes and tubes for the heat exchanger and also better brazing property can be provided.
    Type: Grant
    Filed: May 27, 1994
    Date of Patent: March 20, 2001
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Taro Kuroda, Motohisa Miyafuji, Kenju Minamoto, Mitsuhiro Ohkubo, Ryoichi Ozaki, Akinori Tsuchiya
  • Patent number: 6136104
    Abstract: A copper alloy which is adapted for use as terminals and connectors, which comprises from 0.1 wt % to less than 0.5 wt % of Ni, from larger than 1.0 wt % to less than 2.5 wt % of Sn, from larger than 1.0 wt % to 15 wt % of Zn, and further comprises from at least one element selected between from 0.0001 wt % to less than 0.05 wt % of P and from 0.0001 wt % to 0.005 wt % of Si, and the balance being Cu and inevitable impurities The alloy has an electrical conductivity of 90% or below relative to a maximum electrical conductivity of an annealed copper alloy and an area ratio of insoluble matters such as precipitates is 5% or below.
    Type: Grant
    Filed: July 7, 1999
    Date of Patent: October 24, 2000
    Assignee: Kobe Steel, Ltd.
    Inventors: Motohisa Miyafuji, Hirofumi Arai, Koya Nomura
  • Patent number: 5769129
    Abstract: A cold- and hot-water supply copper alloy pipe with an inner-surface protective film is provided. A pipe body is made of a copper alloy which consists essentially of at least one of Zn and Mn by 0.02 wt % or more as the total amount, Zn being restricted to 5 wt % or less and Mn being restricted to 3 wt % or less and balance being copper and inevitable impurities. A protective film is formed on the inner surface of the copper alloy pipe body and made of Sn and inevitable impurities. The protective film has an average thickness of 0.2 to 4 .mu.m in the pipe circumferential direction. The protective film can be made of Sn, an intermetallic compound of Sn and Cu, and inevitable impurities or made of an intermetallic compound of Sn an Cu and inevitable impurities. In any case, Cu.sub.3 Sn must not present on the surface of the protective film. This type of copper alloy pipe makes it possible to prevent an .epsilon.
    Type: Grant
    Filed: February 10, 1997
    Date of Patent: June 23, 1998
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Taro Kuroda, Motohisa Miyafuji, Kenju Minamoto
  • Patent number: 5527377
    Abstract: Conductivity distribution on the cross section of metal or alloy is measured by an eddy current type conductivity meter and conductivity distribution contour map is prepared. Based on the pattern of this conductivity distribution contour map, heat history of an ingot and segregation of added element are analyzed and melting and/or casting conditions of metal or alloy are re-established. This method allows to carry out the testing and analysis within short time and quickly provides assessment results for re-establishment of melting and/or casting conditions. Thereby, metal or alloy ingots which may create poor quality products during the following steps can be eliminated; in particular, applying this method to a manufacturing of copper precipitation hardening alloy and the like, more sound ingots can be obtained and suitability of ingots for the material which should be worked in the following step can be assessed.
    Type: Grant
    Filed: December 9, 1994
    Date of Patent: June 18, 1996
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Yosuke Miwa, Junichi Ohsako, Motohisa Miyafuji, Isao Hosokawa, Syuhei Mori
  • Patent number: 4990309
    Abstract: A high strength copper alloy of excellent bending processability containing Ni: 5-20 wt %, Sn: 0.5-3 wt %, Al: 0.5-5 wt %, Mg: 0.001-0.05 wt %, Cr: 0.001-0.1 wt %, Zn: 0.05-5 wt %, the balance of Cu and inevitable impurities, and having a tensile strength of from 80 to 120 kgf/mm.sup.2. Up to 0.2 wt % of one or more of Fe,Mn,Ti,Zr,P,In,Ta and Co can be added without a deleterious effect. The alloy is non-toxic and economical, as well as shows tensile strength and elongation at least comparable with beryllium-copper alloy and has excellent solderability and solder-resistant and heat resistant peelability. The alloy can be used suitably as materials for electric terminals, connectors, etc.
    Type: Grant
    Filed: July 6, 1989
    Date of Patent: February 5, 1991
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Motohisa Miyafuji, Riichi Tsuno, Tatsuya Kinoshita, Hitoshi Tanaka
  • Patent number: 4822562
    Abstract: A copper alloy excellent in migration resistance comprising from 0.05 to 0.20% by weight of Fe, from 0.02 to 0.05% by weight of P, from 1.0 to 5.0% by weight of Zn, less than 2.5% by weight of Sn and the substantial balance of Cu and impurities. The copper alloy of this invention is excellent in migration resistance as comparable with brass and also excellent in stress corrosion crackings, as well as have higher strength than the copper alloy or the pure copper or the like.
    Type: Grant
    Filed: November 13, 1986
    Date of Patent: April 18, 1989
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Motohisa Miyafuji, Isao Hosokawa
  • Patent number: 4732732
    Abstract: A phosphor bronze alloy excellent in migration resistance, which containing from 3.0 to 9.0% by weight of Sn, from 0.03 to 0.35% by weight of P, from 1.0 to 5.0% by weight of Zn, and the substantial balance of Cu and impurities. The phosphor bronze alloy according to this invention is excellent in the migration resistance as comparable with that of brass without degrading the solderability or electrical conductivity.
    Type: Grant
    Filed: November 13, 1986
    Date of Patent: March 22, 1988
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Motohisa Miyafuji, Yasuhiro Nakashima, Isao Hosokawa
  • Patent number: 4687633
    Abstract: A lead material for ceramic package ICs which comprises Ni 1.0-5.0 wt %, Co 0.2-1.0 wt %, Si 0.2-1.5 wt %, Zn 0.1-5.0 wt %, Cr 0.001-0.1 wt %, and Mn 0.02-1.0 wt %, with the remainder being Cu and inevitable impurities. It does not cause cracking to the ceramic substrate in the cooling step after silver soldering at 800.degree. to 950.degree. C., even though its coefficient of thermal expansion differs from that of ceramics. Moreover, it retains its high strength and conductivity after brazing.
    Type: Grant
    Filed: January 7, 1986
    Date of Patent: August 18, 1987
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Motohisa Miyafuji, Tateo Yuchi, Riichi Tsuno
  • Patent number: 4656003
    Abstract: There is provided a copper alloy which comprises 1.0 to 3.5 wt. % of Ni, 0.2 to 0.9 wt. % of Si, 0.02 to 1.0 wt. % of Mn, 0.1 to 5.0 wt. % of Zn, 0.1 to 2.0 wt. % of Sn, and 0.001 to 0.01 wt. % of Mg, and 0.001 to 0.01 wt. % of one or more members selected from Cr, Ti, and Zr, with the remainder being substantially Cu. The copper alloy is suitable for lead frames for semiconductors and is also suitable for terminals and connectors. The copper alloy is produced by a process which comprises starting cooling from a temperature above 600.degree. C. at a rate of 5.degree. C. per second or higher after hot rolling of an ingot of said copper alloy, performing annealing at a temperature of 400.degree. to 600.degree. C. for 5 minutes to 4 hours after cold working, performing refining finish rolling, and performing annealing at a temperature of 400.degree. to 600.degree. C. for a short time of 5 to 60 seconds.
    Type: Grant
    Filed: October 11, 1985
    Date of Patent: April 7, 1987
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Motohisa Miyafuji, Yasuhiro Nakashima, Satoru Katayama, Takashi Matsui, Hidekazu Harada, Youji Yuki
  • Patent number: 4591484
    Abstract: A lead material for semiconductor devices comprising from 0.4 to 4.0 wt % of Ni, from 0.1 to 1.0 wt % of Si, from 0.05 to 1.0 wt % of Zn, from 0.01 to 1.0 wt % of Mn, from 0.001 to less than 0.01 wt % of Mg, from 0.001 to less than 0.01 wt % of Cr, up to 0.003 wt % of S, and the balance of Cu and inevitable impurities. The material may further comprise up to 5 ppm of hydrogen and up to 5 ppm of oxygen.
    Type: Grant
    Filed: April 3, 1985
    Date of Patent: May 27, 1986
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Motohisa Miyafuji, Takashi Matsui, Hidekazu Harada
  • Patent number: 4430298
    Abstract: A copper alloy for electric and electronic devices, comprising: 3.0-3.5 wt % of Ni, 0.5-0.9 wt % of Si, 0.02-1.0 wt % of Mn, 0.1-5.0 wt % of Zn and the balance Cu and the inevitable impurities.
    Type: Grant
    Filed: June 6, 1983
    Date of Patent: February 7, 1984
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Motohisa Miyafuji, Takashi Matsui, Hidekazu Harada, Masumitsu Soeda, Shin Ishikawa, Hiroshi Murakado, Hiroaki Kawamoto, Takeo Tabuchi, Kunio Kamada, Yasuhiro Nakashima