Patents by Inventor Motomune Kodama

Motomune Kodama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150279700
    Abstract: The deterioration of the resin base materials in the bonded structure is prevented. In a bonded structure containing two base materials at least one of which is a resin, an oxide which contains either P or Ag, V, and Te, and are formed by softening on the two base materials, bond the two base materials. In addition, in a method for producing a bonded structure containing two base materials at least one of which is a resin containing: supplying an oxide containing either P or Ag, V, and Te to the base material; and applying electromagnetic waves to the oxide, whereby the oxide, which soften on the substrates, bond the two base material.
    Type: Application
    Filed: November 9, 2012
    Publication date: October 1, 2015
    Inventors: Motomune Kodama, Takashi Naito, Yuichi Sawai, Tadashi Fujieda, Takuya Aoyagi, Masanori Miyagi
  • Publication number: 20150270508
    Abstract: In an electronic component including two substrates at least one of which is transparent, an organic member arranged between these substrates, and a bonding portion located onto respective outer circumferential portions of the two substrates, this bonding portion includes a low-melting glass and filler particles. The low-melting glass includes vanadium oxide. The filler particles include a low thermally-expandable material, and an oxide containing a bivalent transition metal as a constituent element. The oxide is dispersed in the low thermally-expandable material, and the low thermally-expandable material has a thermal expansion coefficient of 5×10?7/° C. or less in a temperature range from 30 to 250° C. This invention makes it possible to heat the filler particles by irradiation with a laser to give the electronic component which is a component having a highly reliable bonding portion.
    Type: Application
    Filed: October 9, 2013
    Publication date: September 24, 2015
    Applicant: Hitachi Chemical Company, Ltd.
    Inventors: Takashi Naito, Shinichi Tachizono, Kei Yoshimura, Yuji Hashiba, Takuya Aoyagi, Masanori Miyagi, Motomune Kodama, Yuichi Sawai, Tadashi Fujieda, Takeshi Tsukamoto, Hajime Murakami
  • Publication number: 20150228391
    Abstract: A technical problem is to turn a persistent current switch on and off at high speed with less heat input. The invention relates to a conductive cooling-type persistent current switch, including: a superconductive wire 1 through which a current is passed; a cooling stage 9 which cools the superconductive wire; and a heater 8 which heats the superconductive wire, wherein the superconductive wire is placed between faces which are each formed by the cooling stage and the heater, a core of the superconductive wire is magnesium diboride 6, and a base material 5 placed around an outer periphery of the core is a material having a resistivity of 10 ??cm or more at 40 K.
    Type: Application
    Filed: July 12, 2013
    Publication date: August 13, 2015
    Applicant: Hitachi, Ltd.,
    Inventors: Motomune Kodama, Kazuhide Tanaka, Yota Ichiki
  • Publication number: 20150187510
    Abstract: An electronic component has an organic member between two transparent substrates, in which outer peripheral portions of the two transparent substrates are bonded by a sealing material containing to melting glass. The low melting glass contains vanadium oxide, tellurium oxide, iron oxide and phosphoric acid, and satisfies the following relations (1) and (2) in terms of oxides. The sealing material is formed of a sealing material paste which contains the low melting glass, a resin binder and a solvent, the low melting glass containing vanadium oxide, tellurium oxide, iron oxide and phosphoric acid, and satisfies the following relations (1) and (2) in terms of the oxides. Thereby, thermal damages to an organic element or an organic material contained in the electronic component can be reduced and an electronic component having a glass bonding layer of high reliability can be produced efficiently.
    Type: Application
    Filed: July 25, 2013
    Publication date: July 2, 2015
    Inventors: Takashi Naito, Shinichi Tachizono, Kei Yoshimura, Yuji Hashiba, Motomune Kodama, Masanori Miyagi, Takuya Aoyagi, Yuichi Sawai, Tadashi Fujieda, Takeshi Tsukamoto, Hajime Murakami
  • Publication number: 20150111755
    Abstract: A superconducting wire has a length that is sufficiently longer than a conventional one, and a critical current density that is uniformly high over the entire length thereof. Density of the magnesium diboride core is 1.5 g/cm3 or higher. A void is present in an arbitrary longitudinal cross-section in the longitudinal direction of the superconducting wire, when a length of a line segment which connects the most distant two points in a closed curve forming the void is assumed to be L, among the voids with length L of 20 ?m or greater, the number of voids with an angle formed by the line segment and the axis in the longitudinal direction of the superconducting wire of 45° or greater is less than the number of voids with the angle formed by the line segment and the axis in the longitudinal direction of the superconducting wire of smaller than 45°.
    Type: Application
    Filed: April 25, 2013
    Publication date: April 23, 2015
    Inventors: Motomune Kodama, Kazuhide Tanaka, Junichi Shimoyama, Akiyasu Yamamoto
  • Patent number: 8855731
    Abstract: A superconducting switch is provided in which the structural strength of the superconducting switch is kept, and thermal efficiency between a superconducting film and a heater is high when an ON state (superconducting state) and an OFF state (normal conducting state) of the superconducting switch are switched. The superconducting switch includes a substrate, a heater for generating heat by energization, a conductive film, and a MgB2 film evaporated on the conductive film. The heater, the conductive film and the MgB2 film are laminated in this order on one surface of the substrate.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: October 7, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Hideki Tanaka, Tsuyoshi Wakuda, Motomune Kodama, Akifumi Matsuda
  • Publication number: 20140287227
    Abstract: Disclosed is a jointed body wherein multiple base members are jointed to each other through a jointing layer, and at least one of the base members is a base member of a ceramic material, semiconductor or glass. The joint material layer contains a metal and an oxide. The oxide contains V and Te, and is present between the metal and the base members. Disclosed is also a joint material in the form of a paste containing an oxide glass containing V and Te, metal particles, and a solvent; in the form of a foil piece or plate in which particles of an oxide glass containing V and Te are embedded; or in the form of a foil piece or plate containing a layer of an oxide glass containing V and Te, and a layer of a metal.
    Type: Application
    Filed: February 12, 2014
    Publication date: September 25, 2014
    Applicant: HITACHI, LTD.
    Inventors: Motomune KODAMA, Takashi NAITO, Tadashi FUJIEDA, Yuichi SAWAI, Takuya AOYAGI, Masanori MIYAGI
  • Publication number: 20140285039
    Abstract: An aluminum wire body, in which an aluminum or aluminum alloy electric wire and a metal to be joined are joined by solder, wherein the solder includes an oxide glass including vanadium and a conducting particle. Preferably, the conducting particle contained in the solder is 90% by volume or less and the oxide glass is 20% by volume to 90% by volume. Further preferably, the oxide glass includes 40% by mass or more of Ag2O in terms of oxides and the glass transition point is 180° C. or less.
    Type: Application
    Filed: February 11, 2014
    Publication date: September 25, 2014
    Applicant: Hitachi, Ltd.
    Inventors: Takuya AOYAGI, Motomune KODAMA, Takashi NAITO, Tadashi FUJIEDA, Yuichi SAWAI, Masanori MIYAGI, Haruo AKAHOSHI, Norihisa IWASAKI
  • Patent number: 8513527
    Abstract: A superconducting circuit including a superconducting joint that joints a niobium titanium superconducting wire having a structure where a filament made of niobium titanium alloy is arranged in a matrix made of copper or copper alloy and other superconducting wire, in which a volume ratio or a surface density of an ?-Ti precipitation in the niobium titanium alloy of the filament in the superconducting joint is smaller than the volume ratio or the surface density of the ?-Ti precipitation in the niobium titanium alloy of the filament in the niobium titanium superconducting wire in a portion other than the superconducting joint.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: August 20, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Motomune Kodama, Michiya Okada, Masaya Takahashi
  • Patent number: 8385994
    Abstract: There is provided a superconducting joint for electrically connecting a first multifilamentary superconducting wire including a plurality of first superconducting filaments embedded in a first stabilizer matrix and a second multifilamentary superconducting wire including a plurality of second superconducting filaments embedded in a second stabilizer matrix.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: February 26, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Motomune Kodama, Tsuyoshi Wakuda
  • Publication number: 20130012392
    Abstract: A superconducting switch is provided in which the structural strength of the superconducting switch is kept, and thermal efficiency between a superconducting film and a heater is high when an ON state (superconducting state) and an OFF state (normal conducting state) of the superconducting switch are switched. The superconducting switch includes a substrate, a heater for generating heat by energization, a conductive film, and a MgB2 film evaporated on the conductive film. The heater, the conductive film and the MgB2 film are laminated in this order on one surface of the substrate.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 10, 2013
    Applicant: HITACHI, LTD.
    Inventors: Hideki Tanaka, Tsuyoshi Wakuda, Motomune Kodama, Akifumi Matsuda
  • Publication number: 20130012395
    Abstract: A superconducting wire which is obtained by a heat treatment at a lower temperature than related art and has a high critical current density, and the process of manufacture can be provided by causing a compound expressed by the following formula (1) to be contained: Mg(B1-xCx)y??(1) where x is a number satisfying 0<x<1, and y is a number satisfying 2.1?y.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 10, 2013
    Applicant: HITACHI, LTD.
    Inventors: Kazuhide Tanaka, Motomune Kodama, Yasuo Kondo
  • Publication number: 20120021915
    Abstract: There is provided a superconducting joint for electrically connecting a first multifilamentary superconducting wire including a plurality of first superconducting filaments embedded in a first stabilizer matrix and a second multifilamentary superconducting wire including a plurality of second superconducting filaments embedded in a second stabilizer matrix.
    Type: Application
    Filed: July 22, 2011
    Publication date: January 26, 2012
    Inventors: Motomune KODAMA, Tsuyoshi Wakuda
  • Publication number: 20110028327
    Abstract: A superconducting circuit including a superconducting joint that joints a niobium titanium superconducting wire having a structure where a filament made of niobium titanium alloy is arranged in a matrix made of copper or copper alloy and other superconducting wire, in which a volume ratio or a surface density of an ?-Ti precipitation in the niobium titanium alloy of the filament in the superconducting joint is smaller than the volume ratio or the surface density of the ?-Ti precipitation in the niobium titanium alloy of the filament in the niobium titanium superconducting wire in a portion other than the superconducting joint.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 3, 2011
    Applicant: Hitachi, Ltd.
    Inventors: Motomune Kodama, Michiya Okada, Masaya Takahashi