Patents by Inventor Motonari Machida

Motonari Machida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10907483
    Abstract: A rotor blade includes: a blade main body having a tip as an upstream end in a rotation direction, and a blade surface in contact with the tip and which is an upstream surface in a flow direction of a work fluid; and an erosion shield formed as a cladding portion using laser welding on the tip and the blade surface. A boundary between the blade main body and the erosion shield is shaped to approach a surface opposite the blade surface from an end facing the blade surface towards the tip. The boundary includes a first arc that includes the end facing the blade surface and a second arc closer towards the tip than the first arc. The first arc is convex towards an inside of the blade main body and the second arc is convex towards an outside of the blade main body.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: February 2, 2021
    Assignee: MITSUBISHI POWER, LTD.
    Inventors: Takehisa Okuda, Motonari Machida, Yasuo Matsunami
  • Patent number: 10662785
    Abstract: A method of welding erosion resistance metallic material is a method of welding erosion resistance metallic material to a base element (1) of a turbine blade leading edge portion (1A). The method includes the steps of: forming a curved surface in the leading edge portion (1A) to which the erosion resistance metallic material is applied so that a radius R of the curved surface is larger than thickness t of the base element (1); and welding the erosion resistance metallic material to the leading edge portion (1A).
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: May 26, 2020
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yasuyuki Fujiya, Takehisa Okuda, Hiroharu Oyama, Motonari Machida
  • Patent number: 10525551
    Abstract: A cladding-by-welding device, an erosion shield forming method, and a turbine blade manufacturing method forming an erosion shield having high erosion resistance including: a powder supply head; a laser head; a line generator configured to irradiate a measurement line beam; a imaging device; a movement mechanism configured to move the powder supply head and the laser head with respect to a base body; and at least one controller configured to cause a projection image on the base body of the measurement line beam acquired by the imaging device to overlap a predetermined position of the imaging device, to set a position where the projection image overlaps the predetermined position of the imaging device as a copying position, to control the movement mechanism based on the copying position, and to move the powder supply head and the laser head with respect to the base body.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: January 7, 2020
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Takehisa Okuda, Motonari Machida, Yasuo Matsunami
  • Patent number: 10370734
    Abstract: A heating step, in which a stainless member is heated to a temperature within or above a heating phase-transformation temperature range (Ar) in which the stainless member is phase-transformed, is executed. A cooling step in which the stainless member heated in the heating step is cooled to a temperature below a cooling phase-transformation temperature range (Mr) in which the stainless member is phase-transformed, is executed. In the cooling step, cooling of the stainless member is suppressed in a control temperature range including the cooling phase-transformation temperature range (Mr).
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: August 6, 2019
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Kohei Hatano, Hiroharu Oyama, Yasuo Matsunami, Naoyuki Umezu, Shuhei Kuroki, Hidetaka Haraguchi, Takumi Matsumura, Motonari Machida
  • Patent number: 10245678
    Abstract: A management method of a powder supply head in which supplied cladding metal is stabilized, and a method and apparatus for forming an erosion shield. The powder supply head has a double tube that supplies the cladding metal to a cladding portion and includes an inner tube that sprays a cladding metal used for cladding by welding and an outer tube that concentrically overlaps the inner tube and sprays a shielding air. The method including: spraying the cladding metal from the powder supply head to a test region; measuring a width of the cladding metal sprayed onto the test region; in a case where the measured width of the cladding metal is an allowance or smaller, determining that the powder supply head is usable, and in a case where the measured width of the cladding metal is greater than the allowance, determining that the powder supply head is unusable.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: April 2, 2019
    Assignee: MITSUBISHI HITACHI POPOWER SYSTEM, LTD.
    Inventors: Takehisa Okuda, Motonari Machida, Yasuo Matsunami
  • Patent number: 10107113
    Abstract: A steam turbine vane manufacturing method including: a groove processing step for forming a protective part joint surface on a steam turbine vane material that has been subjected to rough processing; a build-up welding step for forming, by build-up welding, a protective part build-up bead on the protective part joint surface; and a processing step for performing processing, by cutting the first steam turbine vane material that has been subjected to rough processing and the protective part build-up bead, to finish the first steam turbine vane material has been subjected to rough processing so that the first steam turbine vane material becomes a second steam turbine vane material that has been subjected to finishing processing. The first steam turbine vane material that has been subjected to rough processing is larger than the second steam turbine vane material that has been subjected to finishing processing.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: October 23, 2018
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Hidetaka Haraguchi, Hiroharu Oyama, Takahiro Ota, Motonari Machida, Kohei Hatano, Takumi Matsumura
  • Patent number: 9919392
    Abstract: A method for manufacturing a turbine rotor blade wherein warping, bending and twisting of the entire rotor blade, which is provided with an excess thickness portion after a forging step, can be suppressed. In the forging step in a process for manufacturing a rotor blade (23), the forging is hot-forged such that the distance (the excess thickness amount) from the blade surface of the blade section (23) to the surface of the excess thickness section is substantially uniform along the entire periphery of a cross section of the blade section (23) and the excess thickness section (31) perpendicular to the blade length direction, and such that the amount of the excess thickness in the blade length direction, which is the thickness of the excess thickness section (31), gradually increases toward the blade tip from a prescribed position.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: March 20, 2018
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Kohei Hatano, Hiroharu Oyama, Motonari Machida, Hidetaka Haraguchi, Ken Ishii, Keisuke Kamitani, Takumi Matsumura, Takahiro Ota
  • Publication number: 20170120384
    Abstract: A cladding-by-welding device, an erosion shield forming method, and a turbine blade manufacturing method forming an erosion shield having high erosion resistance including: a powder supply head; a laser head; a line generator configured to irradiate a measurement line beam; a imaging device; a movement mechanism configured to move the powder supply head and the laser head with respect to a base body; and at least one controller configured to cause a projection image on the base body of the measurement line beam acquired by the imaging device to overlap a predetermined position of the imaging device, to set a position where the projection image overlaps the predetermined position of the imaging device as a copying position, to control the movement mechanism based on the copying position, and to move the powder supply head and the laser head with respect to the base body.
    Type: Application
    Filed: April 1, 2015
    Publication date: May 4, 2017
    Inventors: Takehisa OKUDA, Motonari MACHIDA, Yasuo MATSUNAMI
  • Publication number: 20170072509
    Abstract: A management method of a powder supply head in which supplied cladding metal is stabilized, and a method and apparatus for forming an erosion shield. The powder supply head has a double tube that supplies the cladding metal to a cladding portion and includes an inner tube that sprays a cladding metal used for cladding by welding and an outer tube that concentrically overlaps the inner tube and sprays a shielding air. The method including: spraying the cladding metal from the powder supply head to a test region; measuring a width of the cladding metal sprayed onto the test region; in a case where the measured width of the cladding metal is an allowance or smaller, determining that the powder supply head is usable, and in a case where the measured width of the cladding metal is greater than the allowance, determining that the powder supply head is unusable.
    Type: Application
    Filed: April 1, 2015
    Publication date: March 16, 2017
    Inventors: Takehisa OKUDA, Motonari MACHIDA, Yasuo MATSUNAMI
  • Publication number: 20170016334
    Abstract: A rotor blade including: a blade main body having a tip as the upstream end in the rotation direction, and a blade surface in contact with the tip and which is the upstream surface in the flow direction of a work fluid; and an erosion shield formed as a cladding portion using laser welding on the tip and the blade surface. The boundary between the main body and the erosion shield is shaped to approach the surface opposite of the blade surface as the boundary moves from the end facing the blade surface towards the tip, and the boundary includes a first arc that includes the end facing the blade surface and a second arc arranged more towards the tip than the first arc; the first arc is convex towards the inside of the main body and the second arc is convex towards the outside of the main body.
    Type: Application
    Filed: April 1, 2015
    Publication date: January 19, 2017
    Inventors: Takehisa OKUDA, Motonari MACHIDA, Yasuo MATSUNAMI
  • Publication number: 20160237517
    Abstract: A heating step, in which a stainless member is heated to a temperature within or above a heating phase-transformation temperature range (Ar) in which the stainless member is phase-transformed, is executed. A cooling step in which the stainless member heated in the heating step is cooled to a temperature below a cooling phase-transformation temperature range (Mr) in which the stainless member is phase-transformed, is executed. In the cooling step, cooling of the stainless member is suppressed in a control temperature range including the cooling phase-transformation temperature range (Mr).
    Type: Application
    Filed: September 29, 2014
    Publication date: August 18, 2016
    Inventors: Kohei HATANO, Hiroharu OYAMA, Yasuo MATSUNAMI, Naoyuki UMEZU, Shuhei KUROKI, Hidetaka HARAGUCHI, Takumi MATSUMURA, Motonari MACHIDA
  • Publication number: 20160184940
    Abstract: The present invention addresses the problem of providing a method for manufacturing a turbine rotor blade wherein warping, bending and twisting of the entire rotor blade, which is provided with an excess thickness portion after a forging step, can be suppressed. In the forging step in a process for manufacturing a rotor blade (23), the forging is hot-forged such that the distance (the excess thickness amount) from the blade surface of the blade section (23) to the surface of the excess thickness section is substantially uniform along the entire periphery of a cross section of the blade section (23) and the excess thickness section (31) perpendicular to the blade length direction, and such that the amount of the excess thickness in the blade length direction, which is the thickness of the excess thickness section (31), gradually increases toward the blade tip from a prescribed position.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 30, 2016
    Inventors: Kohei HATANO, Hiroharu OYAMA, Motonari MACHIDA, Hidetaka HARAGUCHI, Ken ISHII, Keisuke KAMITANI, Takumi MATSUMURA, Takahiro OTA
  • Publication number: 20150377043
    Abstract: A steam turbine vane manufacturing method including: a groove processing step for forming a protective part connecting surface (14) on a steam turbine vane material (11) that was subjected to rough processing; a build-up welding step for forming, by build-up welding, a protective part build-up bead (15) on the protective part connecting surface (14); and a processing step for performing processing, by cutting the steam turbine vane material (11) that was subjected to rough processing and the protective part build-up bead (15), to finish the steam turbine vane material (11) that was subjected to rough processing so that the same becomes a steam turbine vane material (16) that was subjected to finishing processing. In this case, the steam turbine vane material (11) that was subjected to rough processing is larger than the steam turbine vane material (16) that was subjected to finishing processing.
    Type: Application
    Filed: January 24, 2014
    Publication date: December 31, 2015
    Applicant: MISUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Hidetaka HARAGUCHI, Hiroharu OYAMA, Takahiro OTA, Motonari MACHIDA, Kohei HATANO, Takumi MATSUMURA
  • Publication number: 20150233257
    Abstract: A method of welding erosion resistance metallic material is a method of welding erosion resistance metallic material to a base element (1) of a turbine blade leading edge portion (1A). The method includes the steps of: forming a curved surface in the leading edge portion (1A) to which the erosion resistance metallic material is applied so that a radius R of the curved surface is larger than thickness t of the base element (1); and welding the erosion resistance metallic material to the leading edge portion (1A).
    Type: Application
    Filed: September 20, 2013
    Publication date: August 20, 2015
    Inventors: Yasuyuki Fujiya, Takehisa Okuda, Hiroharu Oyama, Motonari Machida