Patents by Inventor Motonori Kimura

Motonori Kimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210078584
    Abstract: A system for dynamically maintaining a vehicle speed during a change in road grade comprises a first sensor configured to detect a depression amount of an accelerator pedal and a second sensor configured to monitor the vehicle speed. The system further comprises a vehicle speed control module configured to: receive an indication that the accelerator pedal is depressed; receive an indication of the vehicle speed; determine that the pedal has been depressed within a threshold amount for a threshold time period; determine that the vehicle speed has been maintained within a threshold for the threshold time period; determine whether the change in the road grade is less than a threshold grade; and, based on a determination that the change in the road grade is less than the threshold, automatically adjust a load on a power source of the vehicle to maintain the vehicle speed during the change in road grade.
    Type: Application
    Filed: September 18, 2019
    Publication date: March 18, 2021
    Inventors: Sandeep Kumar Reddy Janampally, Alejandro M. Sanchez, Motonori Kimura
  • Patent number: 10260575
    Abstract: At the time when a hydraulic actuator is operated to engage a dog clutch, after it is detected that a hydraulic pressure for operating the hydraulic actuator is higher than or equal to a predetermined hydraulic pressure, it is determined whether the dog clutch is not engaged. Therefore, non-engagement determination due to insufficient hydraulic pressure for operating the hydraulic actuator is prevented. Thus, at the time when the hydraulic actuator is operated to engage the dog clutch, it is possible to prevent consumption of time to engage the dog clutch due to unnecessary re-engagement operation.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: April 16, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenji Matsuo, Akira Hino, Hiroki Kondo, Mitsuhiro Fukao, Daisuke Inoue, Akihide Ito, Motonori Kimura
  • Patent number: 10065648
    Abstract: Vehicle control system and method provided to change speed ratio smoothly when switching a power transmission route from a route including a geared transmission to a route including a continuously variable transmission. Vehicle control system applied to a vehicle comprising: continuously variable transmission for changing speed ratio continuously is disposed between input shaft and output shaft; geared transmission is disposed parallel to the continuously variable transmission, and is adapted to establish speed ratio that cannot be established by continuously variable transmission; and friction clutch is brought into engagement to switch torque transmission route from a route including the geared transmission to a route including the continuously variable transmission.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: September 4, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenji Matsuo, Yusuke Ohgata, Daisuke Inoue, Atsushi Ayabe, Motonori Kimura, Shuhei Ishikawa, Akira Hino, Hiroki Kondo
  • Patent number: 10001179
    Abstract: A control apparatus for a power transmission system is provided. The control apparatus includes an electronic control unit. The electronic control unit is configured to, when a discharge flow rate of a mechanical oil pump is smaller than a predetermined flow rate and an electric oil pump is being driven while a vehicle is traveling, determine whether a decrease in the operating hydraulic pressure has occurred. The electronic control unit is configured to, when a first engagement device is controlled from a released state toward an engaged state, control a first control pressure such that the first control pressure in a case where a decrease in a operating hydraulic pressure has occurred is lower than the first control pressure in a case where a decrease in the operating hydraulic pressure does not occur.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: June 19, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Motonori Kimura, Akihide Itoh, Kazuya Sakamoto, Hiroki Kondo, Mitsuhiro Fukao, Kazuya Ishiizumi
  • Publication number: 20170241492
    Abstract: At the time when a hydraulic actuator is operated to engage a dog clutch, after it is detected that a hydraulic pressure for operating the hydraulic actuator is higher than or equal to a predetermined hydraulic pressure, it is determined whether the dog clutch is not engaged. Therefore, non-engagement determination due to insufficient hydraulic pressure for operating the hydraulic actuator is prevented. Thus, at the time when the hydraulic actuator is operated to engage the dog clutch, it is possible to prevent consumption of time to engage the dog clutch due to unnecessary re-engagement operation.
    Type: Application
    Filed: October 9, 2015
    Publication date: August 24, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenji MATSUO, Akira HINO, Hiroki KONDO, Mitsuhiro FUKAO, Daisuke INOUE, Akihide ITO, Motonori KIMURA
  • Patent number: 9689491
    Abstract: When there is a failure in a speed ratio control linear solenoid valve, or the like, a controller for a vehicle power transmission system establishes a state where torque is transmitted via a gear mechanism, and, in this state, determines whether the speed ratio control linear solenoid valve, or the like, has returned to a normal state by comparing a target speed ratio and actual speed ratio of a continuously variable transmission with each other. It is determined whether the speed ratio control linear solenoid valve, or the like, has returned to the normal state by changing the target speed ratio of the belt-type continuously variable transmission and then comparing the target speed ratio with the actual speed ratio. Thus, when the speed ratio control linear solenoid valve, or the like, has returned from a fail-safe state to the normal state, a feeling of strangeness of a driver is suppressed.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: June 27, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akihide Ito, Daisuke Inoue, Mitsuhiro Fukao, Kenji Matsuo, Hiroki Kondo, Motonori Kimura, Kazuya Sakamoto
  • Patent number: 9664278
    Abstract: A control device for a vehicle includes a transmission mechanism capable of setting a fixed transmission gear ratio, a continuously variable transmission provided in parallel with the transmission mechanism, and a path switching mechanism for selectively blocking a torque transmission path that includes the transmission mechanism and that is configured to dampen vibration. The control device further includes a clutch mechanism where the continuously variable transmission and the transmission mechanism capable of setting constant transmission gear ratio are arranged in parallel between an input shaft and the output shaft, that selectively connects torque transmission path stretching from an internal combustion engine to drive wheels via transmission mechanism, and one clutch and other clutch are arranged in series, the other clutch is arranged on a relatively downstream side.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: May 30, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsuhiro Toyoda, Hirofumi Nakada, Michio Yoshida, Daisuke Inoue, Atsushi Ayabe, Motonori Kimura, Akira Hino, Hiroki Kondo, Kenji Matsuo, Takuro Shimazu
  • Patent number: 9663110
    Abstract: A vehicle transmission has a continuously variable speed change mechanism provided between an input shaft to which a torque output by a driving force source is transmitted and an output shaft from which a torque is output to a driving wheel. The transmission is able to selectively block torque transmission between the mechanism and the output shaft. The mechanism is rotated by the driving force source with torque transmission between the mechanism and the output shaft blocked. A control apparatus limits a shifting speed of the mechanism to or below an upper-limit speed determined in advance in a case where a speed ratio of the mechanism is changed with the mechanism rotated by the driving force source that is subjected to idling rotational speed control, while the mechanism is blocked from the output shaft such that no torque is transmitted between the mechanism and the output shaft.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: May 30, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shuhei Ishikawa, Motonori Kimura, Atsushi Ayabe
  • Patent number: 9573582
    Abstract: A control device of a continuously variable transmission for a vehicle to which power of a drive force source is input through a transmission path connecting/disconnecting device changes a gear ratio of the continuously variable transmission to a lower vehicle speed side during vehicle deceleration when the transmission path connecting/disconnecting device is in a power transmission interrupted state of interrupting power transmission through a power transmission path between the drive force source and the continuously variable transmission, earlier as compared to when the transmission path connecting/disconnecting device is in a power transmittable state enabling the power transmission, and the control device changes a gear ratio of the continuously variable transmission earlier to the lower vehicle speed side when vehicle deceleration is larger, when the transmission path connecting/disconnecting device is in the power transmission interrupted state.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: February 21, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shuhei Ishikawa, Motonori Kimura, Atsushi Ayabe, Shinya Toyoda
  • Patent number: 9568098
    Abstract: A controller for a vehicle transmission is disclosed. The controller may include an electronic control unit configured to carry out a change shift for changing a path of the transmission of power between a first transmission path and a second transmission path by engaging a predetermined clutch mechanism. The electronic control unit may also be configured to set a change speed ratio region that defines a range of a speed ratio of the first transmission mechanism such that a rotation speed difference between engagement members of the clutch mechanism, which are engaged with each other in carrying out the change shift, is smaller than or equal to a predetermined value. When a speed ratio outside the change speed ratio region is set in the first transmission mechanism, the change shift is not carried out.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: February 14, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Motonori Kimura, Daisuke Inoue, Atsushi Ayabe, Shuhei Ishikawa, Hiroki Kondo, Akira Hino, Kenji Matsuo, Takuro Shimazu
  • Patent number: 9540012
    Abstract: A vehicle control system and method is applied to a vehicle including: a continuously variable transmission for changing a speed ratio continuously that is disposed between an input shaft and an output shaft; a geared transmission that is disposed parallel to the continuously variable transmission, and that is adapted to establish a speed ratio that cannot be established by the continuously variable transmission; and a friction clutch that is brought into engagement to switch a torque transmission route from a route including the geared transmission to a route including the continuously variable transmission. The vehicle control system is configured to start a speed change operation of the continuously variable transmission before a commencement of clutch-to-clutch shifting between the friction clutches when switching the torque transmission route from the route including the geared transmission to the route including the continuously variable transmission.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: January 10, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenji Matsuo, Yusuke Ohgata, Daisuke Inoue, Atsushi Ayabe, Motonori Kimura, Shuhei Ishikawa, Akira Hino, Hiroki Kondo
  • Publication number: 20160369856
    Abstract: A control apparatus for a power transmission system is provided. The control apparatus includes an electronic control unit. The electronic control unit is configured to, when a discharge flow rate of a mechanical oil pump is smaller than a predetermined flow rate and an electric oil pump is being driven while a vehicle is traveling, determine whether a decrease in the operating hydraulic pressure has occurred. The electronic control unit is configured to, when a first engagement device is controlled from a released state toward an engaged state, control a first control pressure such that the first control pressure in a case where a decrease in a operating hydraulic pressure has occurred is lower than the first control pressure in a case where a decrease in the operating hydraulic pressure does not occur.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 22, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Motonori KIMURA, Akihide ITOH, Kazuya SAKAMOTO, Hiroki KONDO, Mitsuhiro FUKAO, Kazuya ISHIIZUMI
  • Patent number: 9494204
    Abstract: A controller for a vehicle transmission in which a continuously variable transmission mechanism able to continuously change its speed ratio and a transmission mechanism having a constant speed ratio are provided in parallel between an input shaft and an output shaft. The transmission includes a friction engagement mechanism and an intermeshing engagement mechanism, the intermeshing engagement mechanism being arranged in series with the friction engagement mechanism, the intermeshing engagement mechanism setting the transmission mechanism to a state where torque is transmittable between the input and output shaft, in changing to a state where the intermeshing engagement mechanism is engaged and the transmission mechanism is able to transmit torque to the output shaft, a torque capacity of the friction engagement mechanism is configured to be increased to a torque capacity to such extent that the transmission mechanism rotates without a delay of start of engagement of the intermeshing engagement mechanism.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: November 15, 2016
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Matsuo, Hirofumi Nakada, Michio Yoshida, Daisuke Inoue, Atsushi Ayabe, Motonori Kimura, Shuhei Ishikawa, Akira Hino, Hiroki Kondo
  • Publication number: 20160272212
    Abstract: A vehicle transmission has a continuously variable speed change mechanism provided between an input shaft to which a torque output by a driving force source is transmitted and an output shaft from which a torque is output to a driving wheel. The transmission is able to selectively block torque transmission between the mechanism and the output shaft. The mechanism is rotated by the driving force source with torque transmission between the mechanism and the output shaft blocked. A control apparatus limits a shifting speed of the mechanism to or below an upper-limit speed determined in advance in a case where a speed ratio of the mechanism is changed with the mechanism rotated by the driving force source that is subjected to idling rotational speed control, while the mechanism is blocked from the output shaft such that no torque is transmitted between the mechanism and the output shaft.
    Type: Application
    Filed: November 12, 2013
    Publication date: September 22, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shuhei ISHIKAWA, Motonori KIMURA, Atsushi AYABE
  • Publication number: 20160258531
    Abstract: When there is a failure in a speed ratio control linear solenoid valve, or the like, a controller for a vehicle power transmission system establishes a state where torque is transmitted via a gear mechanism, and, in this state, determines whether the speed ratio control linear solenoid valve, or the like, has returned to a normal state by comparing a target speed ratio and actual speed ratio of a continuously variable transmission with each other. It is determined whether the speed ratio control linear solenoid valve, or the like, has returned to the normal state by changing the target speed ratio of the belt-type continuously variable transmission and then comparing the target speed ratio with the actual speed ratio. Thus, when the speed ratio control linear solenoid valve, or the like, has returned from a fail-safe state to the normal state, a feeling of strangeness of a driver is suppressed.
    Type: Application
    Filed: February 29, 2016
    Publication date: September 8, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akihide ITO, Daisuke INOUE, Mitsuhiro FUKAO, Kenji MATSUO, Hiroki KONDO, Motonori KIMURA, Kazuya SAKAMOTO
  • Publication number: 20160131256
    Abstract: A control device for vehicle is includes: transmission mechanism capable of setting fixed transmission gear ratio; continuously variable transmission provided in parallel with transmission mechanism; and path switching mechanism for selectively blocking torque transmission path that includes transmission mechanism and that is configured to dampen vibration.
    Type: Application
    Filed: June 12, 2013
    Publication date: May 12, 2016
    Inventors: Mitsuhiro TOYODA, Hirofumi NAKADA, Michio YOSHIDA, Daisuke INOUE, Atsushi AYABE, Motonori KIMURA, Akira HINO, Hiroki KONDO, Kenji MATSUO, Takuro SHIMAZU
  • Publication number: 20160121896
    Abstract: A vehicle control system and method is applied to a vehicle including: a continuously variable transmission for changing a speed ratio continuously that is disposed between an input shaft and an output shaft; a geared transmission that is disposed parallel to the continuously variable transmission, and that is adapted to establish a speed ratio that cannot be established by the continuously variable transmission; and a friction clutch that is brought into engagement to switch a torque transmission route from a route including the geared transmission to a route including the continuously variable transmission. The vehicle control system is configured to start a speed change operation of the continuously variable transmission before a commencement of clutch-to-clutch shifting between the friction clutches when switching the torque transmission route from the route including the geared transmission to the route including the continuously variable transmission.
    Type: Application
    Filed: April 16, 2013
    Publication date: May 5, 2016
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji MATSUO, Yusuke OHGATA, Daisuke INOUE, Atsushi AYABE, Motonori KIMURA, Shuhei ISHIKAWA, Akira HINO, Hiroki KONDO
  • Publication number: 20160091090
    Abstract: A controller for a vehicle transmission in which a first transmission path including a first transmission mechanism that is able to continuously change its speed ratio and a second transmission path including a second transmission mechanism having a set speed ratio different from that of the first transmission mechanism are provided in parallel with each other between an input shaft to which torque is input from a driving force source of a vehicle and an output shaft that outputs torque to an output member, the vehicle transmission carrying out transmission of power between the input shaft and the output shaft via one of the first transmission path and the second transmission path, includes: performing means for carrying out a change shift for changing a path of the transmission of power between the first transmission path and the second transmission path by engaging a predetermined clutch mechanism; and setting means for setting a change speed ratio region that defines a range of a speed ratio of the first t
    Type: Application
    Filed: April 16, 2013
    Publication date: March 31, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Motonori KIMURA, Daisuke INOUE, Atsushi AYABE, Shuhei ISHIKAWA, Hiroki KONDO, Akira HINO, Kenji MATSUO, Takuro SHIMAZU
  • Publication number: 20160052522
    Abstract: Vehicle control system and method provided to change speed ratio smoothly when switching a power transmission route from a route including a geared transmission to a route including a continuously variable transmission. Vehicle control system applied to a vehicle comprising: continuously variable transmission for changing speed ratio continuously is disposed between input shaft and output shaft; geared transmission is disposed parallel to the continuously variable transmission, and is adapted to establish speed ratio that cannot be established by continuously variable transmission; and friction clutch is brought into engagement to switch torque transmission route from a route including the geared transmission to a route including the continuously variable transmission.
    Type: Application
    Filed: April 4, 2013
    Publication date: February 25, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenji MATSUO, Yusuke OHGATA, Daisuke INOUE, Atsushi AYABE, Motonori KIMURA, Shuhei ISHIKAWA, Akira HINO, Hiroki KONDO
  • Publication number: 20160025161
    Abstract: In a controller for a vehicle transmission in which a continuously variable transmission mechanism that is able to continuously change its speed ratio and a transmission mechanism having a constant speed ratio are provided in parallel with each other between an input shaft to which torque is transmitted from a driving force source and an output shaft that outputs torque to a drive wheel, the vehicle transmission including a friction engagement mechanism and an intermeshing engagement mechanism, the friction engagement mechanism selectively transmitting torque from the input shaft to the transmission mechanism, the intermeshing engagement mechanism arranged in series with the friction engagement mechanism on a downstream side of the friction engagement mechanism in a torque transmission direction from the input shaft toward the output shaft, the intermeshing engagement mechanism setting the transmission mechanism to a state where torque is transmittable between the input shaft and the output shaft, in changing
    Type: Application
    Filed: April 16, 2013
    Publication date: January 28, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenji MATSUO, Hirofumi NAKADA, Michio YOSHIDA, Daisuke INOUE, Atsushi AYABE, Motonori KIMURA, Shuhei ISHIKAWA, Akira HINO, Hiroki KONDO