Patents by Inventor Motoo Yumura

Motoo Yumura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100062229
    Abstract: This invention intends to provide an aligned single-walled CNT aggregate and the like which can be produced easily and has a high specific surface area, in which individual CNTs are aligned and which has excellent shape processability due to low bulk density. The aligned single-walled CNT aggregate of this invention comprises a base material, catalyst particles with a density of 1×1010 to 5×1013N/cm2 disposed on the base material, and a plurality of single-walled carbon nanotubes (CNTs) grown from the fine particles of the catalyst, in which the plurality of single-walled CNTs have a specific surface area of 600 m2/g to 2600 m2/g, and a weight density from 0.002 g/cm3 to 0.2 g/cm3, and the alignment degree is defined by a specific condition or conditions.
    Type: Application
    Filed: June 17, 2009
    Publication date: March 11, 2010
    Inventors: Kenji HATA, Don N. FUTABA, Motoo YUMURA
  • Publication number: 20090297846
    Abstract: An aligned double-walled carbon nanotube bulk structure composed of plural aligned double-walled carbon nanotubes and having a height of 0.1 ?m or more and a double-walled carbon nanotube are produced by chemically vapor depositing (CVD) a carbon nanotube in the presence of a metal catalyst with controlled particle size and thickness, preferably in the presence of moisture. According to this, it is possible to provide a double-walled nanotube which is free from inclusion of the catalyst, has high purity, is easy to control the alignment and growth, is able to achieve the fabrication through the formation of a bulk structure and has excellent electron emission characteristic (particularly, a double-walled carbon nanotube bulk structure) and also to provide a production technology thereof.
    Type: Application
    Filed: November 27, 2006
    Publication date: December 3, 2009
    Inventors: Kenji Hata, Takeo Yamada, Motoo Yumura, Sumio Iijima
  • Publication number: 20090272935
    Abstract: An aligned carbon nanotube bulk aggregate of the invention is characterized by consisting of plural carbon nanotubes aligned in a predetermined direction and having a density of 0.2 to 1.5 g/cm3. The carbon nanotube bulk aggregate can be produced by a process of growing carbon nanotubes by chemical vapor deposition (CVD) in the presence of a metal catalyst which comprises growing carbon nanotubes in aligned state in a reaction atmosphere, soaking the obtained carbon nanotubes with a liquid, and then drying the resulting nanotubes. Thus, an aligned carbon nanotube bulk aggregate having a density of 0.2 to 1.5 g/cm3 can be obtained. The invention provides a high density and a high hardness which were not attained in the prior art, and a process for the production of the same.
    Type: Application
    Filed: January 5, 2007
    Publication date: November 5, 2009
    Inventors: Kenji Hata, Don N. Futaba, Motoo Yumura, Sumio Iijima
  • Publication number: 20090232965
    Abstract: The present invention provides a method and an apparatus capable of mass-producing an aligned CNT aggregate of a desired height through automatic control of a CVD apparatus according to a growth height of the aligned CNT aggregate. According to the present invention, an aligned carbon nanotube aggregate growing on a substrate is irradiated with a parallel ray, and the size of a resulting shadow is measured with a measurement section using a telecentric optical system, which acts as if it has an infinite focal length, so as to detect, in real time, a growth height of the aligned carbon nanotube aggregate being synthesized, and the synthesis of the aligned carbon nanotube aggregate is terminated when the growth height of the aligned carbon nanotube aggregate reaches a predetermined state.
    Type: Application
    Filed: March 2, 2009
    Publication date: September 17, 2009
    Inventors: Kenji Hata, Satoshi Yasuda, Motoo Yumura
  • Publication number: 20090214816
    Abstract: An aligned carbon nanotube bulk structure having portions different in density of the invention is characterized by being composed of carbon nanotubes aligned in a predetermined direction and having both a high-density portion of 0.2 to 1.5 g/cm3 and a low-density portion of 0.001 to 0.2 g/cm3. The carbon nanotube bulk structure can be produced by a process of growing carbon nanotubes by chemical vapor deposition (CVD) in the presence of a metal catalyst which comprises growing carbon nanotubes in an aligned state in a reaction atmosphere, soaking the obtained carbon nanotubes with a liquid, and then drying the resulting nanotubes. The invention provides aligned carbon nanotube bulk structure controlled in various properties such as density and hardness in sites thereof, and a process for the production of the same; and application thereof.
    Type: Application
    Filed: January 5, 2007
    Publication date: August 27, 2009
    Inventors: Kenji Hata, Don N. Futaba, Motoo Yumura, Sumio Iijima
  • Publication number: 20090186223
    Abstract: It relates to high purity single-walled carbon nanotubes having controlled diameter, useful as industrial materials, including high-strength carbon wire rods, particularly uniform single-walled carbon nanotubes having diameter fallen in a range of from 1.0 to 2.0 nm, and a method for producing the same efficiently, in large amount and inexpensively. The single-walled carbon nanotube obtained is characterized in that its diameter is fallen in a range of from 1.0 to 2.0 nm, and an intensity ratio IG/ID between G-band and D-band in a Raman spectrum is 200 or more. Furthermore, those single-walled carbon nanotubes are synthesized by a gas-phase flow CVD method that uses a saturated aliphatic hydrocarbon which is liquid at ordinary temperature as a first carbon source and an unsaturated aliphatic hydrocarbon which is gas at ordinary temperature as a second carbon source.
    Type: Application
    Filed: April 24, 2007
    Publication date: July 23, 2009
    Applicant: National Institute of Advanced Industrial Science and Technology
    Inventors: Takeshi Saito, Satoshi Ohshima, Motoo Yumura
  • Publication number: 20080318049
    Abstract: This invention provides an aligned single-layer carbon nanotube bulk structure, which comprises an assembly of a plurality of aligned single-layer carbon nanotube and has a height of not less than 10 ?m, and an aligned single-layer carbon nanotube bulk structure which comprises an assembly of a plurality of aligned single-layer carbon nanotubes and has been patterned in a predetermined form. This structure is produced by chemical vapor deposition (CVD) of carbon nanotubes in the presence of a metal catalyst in a reaction atmosphere with an oxidizing agent, preferably water, added thereto. An aligned single-layer carbon nanotube bulk structure, which has realized high purify and significantly large scaled length or height, its production process and apparatus, and its applied products are provided.
    Type: Application
    Filed: July 27, 2005
    Publication date: December 25, 2008
    Inventors: Kenji Hata, Sumio Ijima, Motoo Yumura, Don Futaba
  • Publication number: 20080226537
    Abstract: A fine carbon fiber having an outer diameter of about 1 to about 80 nm and an aspect ratio of 10 to 30,000, comprising a hollow center portion and a multi-layer sheath structure of a plurality of carbon layers, the layers forming annual rings, wherein the sheath-forming carbon layers form an incomplete sheath, i.e., the carbon layers are partially broken or disrupted in a longitudinal direction, and the outer diameter of the carbon fiber and/or the diameter of the hollow center portion are not uniform in a longitudinal direction. The carbon fiber is obtained by instantaneously reacting a carrier gas at a high temperature and an organic compound gas kept at a temperature below the decomposition temperature of the transition metal compound and has a conductivity equivalent to that of a conventional vapor phase method and is useful as a filler material in resins, rubbers, paints and the like.
    Type: Application
    Filed: May 14, 2008
    Publication date: September 18, 2008
    Applicant: Showa Denko K.K.
    Inventors: Toshio Morita, Hitoshi Inoue, Kunio Nishimura, Yutaka Suhara, Satoshi Ohshima, Motoo Yumura
  • Publication number: 20070298253
    Abstract: A transparent conductive film wherein carbon nanotubes are discursively embedded in the surface portion of a resin film is produced by (A) dispersing carbon nanotubes on a substrate surface, (B) forming a transparent resin film over the substrate on which the carbon nanotubes are dispersed, and then (C) separating the thus-formed resin film. This is a novel technique for realizing a highly transparent conductive film which is flexible and highly conductive even when amount of carbon nanotubes used therefor is small.
    Type: Application
    Filed: September 16, 2005
    Publication date: December 27, 2007
    Inventors: Kenji Hata, Sumio Iijima, Motoo Yumura, Don Futaba
  • Publication number: 20070267287
    Abstract: The present invention relates to a nanocapsule-type structure having an average particle diameter of 1 to 50 nm, said nanocapsule-type structure comprising an aqueous solution of a metal compound encapsulated in the inside thereof. Preferably, the nanocapsule-type structure is such that the nanocapsule structure is formed by self-organization of a surfactant in an organic solvent. This nanocapsule structure is in a nanometer size, and high in dispersibility even in a high-concentration region in an organic solvent, and does not undergo aggregation, and it is useful as a catalyst for a CVD method.
    Type: Application
    Filed: August 31, 2005
    Publication date: November 22, 2007
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takeshi Saito, Satoshi Ohshima, Motoo Yumura
  • Publication number: 20060083919
    Abstract: A fine carbon fiber having an outer diameter of about 1 to about 80 nm and an aspect ratio of 10 to 30,000, comprising a hollow center portion and a multi-layer sheath structure of a plurality of carbon layers, the layers forming annual rings, wherein the sheath-forming carbon layers form an incomplete sheath, i.e., the carbon layers are partially broken or disrupted in a longitudinal direction, and the outer diameter of the carbon fiber and/or the diameter of the hollow center portion are not uniform in a longitudinal direction. The carbon fiber is obtained by instantaneously reacting a carrier gas at a high temperature and an organic compound gas kept at a temperature below the decomposition temperature of the transition metal compound and has a conductivity equivalent to that of a conventional vapor phase method and is useful as a filler material in resins, rubbers, paints and the like.
    Type: Application
    Filed: November 30, 2005
    Publication date: April 20, 2006
    Inventors: Toshio Morita, Hitoshi Inoue, Kunio Nishimura, Yutaka Suhara, Satoshi Ohshima, Motoo Yumura
  • Patent number: 6998176
    Abstract: A fine carbon fiber having an outer diameter of about 1 to about 80 nm and an aspect ratio of 10 to 30,000, comprising a hollow center portion and a multi-layer sheath structure of a plurality of carbon layers, the layers forming annual rings, wherein the sheath-forming carbon layers form an incomplete sheath, i.e., the carbon layers are partially broken or disrupted in a longitudinal direction, and the outer diameter of the carbon fiber and/or the diameter of the hollow center portion are not uniform in a longitudinal direction. The carbon fiber is obtained by instantaneously reacting a carrier gas at a high temperature and an organic compound gas kept at a temperature below the decomposition temperature of the transition metal compound and has a conductivity equivalent to that of a conventional vapor phase method and is useful as a filler material in resins, rubbers, paints and the like.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: February 14, 2006
    Assignee: Showa Denko K.K.
    Inventors: Toshio Morita, Hitoshi Inoue, Kunio Nishimura, Yutaka Suhara, Satoshi Ohshima, Motoo Yumura
  • Patent number: 6974627
    Abstract: A fine carbon fiber mixture produced through a vapor-growth process, which comprises fine carbon fiber, each fiber filament of the fiber having an outer diameter of 1 to 500 nm and an aspect ratio of 10 to 15,000 and comprising a hollow space extending along its center axis and a multi-layer sheath structure consisting of a plurality of carbon layers; and non-fibrous carbon such as flake-like carbon, granular carbon, or sheet-like carbon. A composition comprising a resin or a rubber and a fine carbon fiber mixture as above contained therein. An electrically conductive article or a sliding article comprising the composition.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: December 13, 2005
    Assignees: Showa Denko K.K., National Institute of Advanced Industrial Science and Technology
    Inventors: Toshio Morita, Ryuji Yamamoto, Hitoshi Inoue, Satoshi Ohshima, Motoo Yumura
  • Publication number: 20040241439
    Abstract: A fine carbon fiber mixture produced through a vapor-growth process, which comprises fine carbon fiber, each fiber filament of the fiber having an outer diameter of 1 to 500 nm and an aspect ratio of 10 to 15,000 and comprising a hollow space extending along its center axis and a multi-layer sheath structure consisting of a plurality of carbon layers; and non-fibrous carbon such as flake-like carbon, granular carbon, or sheet-like carbon. A composition comprising a resin or a rubber and a fine carbon fiber mixture as above contained therein. An electrically conductive article or a sliding article comprising the composition.
    Type: Application
    Filed: March 16, 2004
    Publication date: December 2, 2004
    Inventors: Toshio Morita, Ryuji Yamamoto, Hitoshi Inoue, Satoshi Ohshima, Motoo Yumura
  • Publication number: 20040131848
    Abstract: A fine carbon fiber having an outer diameter of about 1 to about 80 nm and an aspect ratio of 10 to 30,000, comprising a hollow center portion and a multi-layer sheath structure of a plurality of carbon layers, the layers forming annual rings, wherein the sheath-forming carbon layers form an incomplete sheath, i.e., the carbon layers are partially broken or disrupted in a longitudinal direction, and the outer diameter of the carbon fiber and/or the diameter of the hollow center portion are not uniform in a longitudinal direction. The carbon fiber is obtained by instantaneously reacting a carrier gas at a high temperature and an organic compound gas kept at a temperature below the decomposition temperature of the transition metal compound and has a conductivity equivalent to that of a conventional vapor phase method and is useful as a filler material in resins, rubbers, paints and the like.
    Type: Application
    Filed: November 4, 2003
    Publication date: July 8, 2004
    Applicant: SHOWA DENKO K.K.
    Inventors: Toshio Morita, Hitoshi Inoue, Kunio Nishimura, Yutaka Suhara, Satoshi Ohshima, Motoo Yumura
  • Patent number: 6699582
    Abstract: A fine carbon fiber having an outer diameter of about 1 to about 80 nm and an aspect ratio of 10 to 30,000, comprising a hollow center portion and a multi-layer sheath structure of a plurality of carbon layers, the layers forming annual rings, wherein the sheath-forming carbon layers form an incomplete sheath, i.e., the carbon layers are partially broken or disrupted in a longitudinal direction, and the outer diameter of the carbon fiber and/or the diameter of the hollow center portion are not uniform in a longitudinal direction. The carbon fiber is obtained by instantaneously reacting a carrier gas at a high temperature and an organic compound gas kept at a temperature below the decomposition temperature of the transition metal compound and has a conductivity equivalent to that of a conventional vapor phase method and is useful as a filler material in resins, rubbers, paints and the like.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: March 2, 2004
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Toshio Morita, Hitoshi Inoue, Kunio Nishimura, Yutaka Suhara, Satoshi Ohshima, Motoo Yumura
  • Publication number: 20030096104
    Abstract: A complex molded body of carbon nanotubes includes a matrix and carbon nanotubes arranged in a given direction in the matrix. The matrix is at least one organic polymer selected from the group consisting of thermoplastic resin, thermosetting resin, rubber, and thermoplastic elastomer. The complex molded body is produced by a method comprising the step of: providing a composition that includes a matrix and carbon nanotubes; applying a magnetic field to the composition to arrange the carbon nanotubes in a given direction; and hardening the composition to produce a complex molded body. The complex molded body has excellent anisotropy in terms of electrical property, thermal property, and mechanical property.
    Type: Application
    Filed: March 14, 2002
    Publication date: May 22, 2003
    Applicant: Polymatech Co., Ltd.
    Inventors: Masayuki Tobita, Toru Kimura, Motoo Yumura, Satoshi Ohshima, Hiroki Ago, Kunio Uchida, Yozo Kakudate, Hiroyuki Yokoi
  • Publication number: 20030039828
    Abstract: A fine carbon fiber having an outer diameter of about 1 to about 80 nm and an aspect ratio of 10 to 30,000, comprising a hollow center portion and a multi-layer sheath structure of a plurality of carbon layers, the layers forming annual rings, wherein the sheath-forming carbon layers form an incomplete sheath, i.e., the carbon layers are partially broken or disrupted in a longitudinal direction, and the outer diameter of the carbon fiber and/or the diameter of the hollow center portion are not uniform in a longitudinal direction. The carbon fiber is obtained by instantaneously reacting a carrier gas at a high temperature and an organic compound gas kept at a temperature below the decomposition temperature of the transition metal compound and has a conductivity equivalent to that of a conventional vapor phase method and is useful as a filler material in resins, rubbers, paints and the like.
    Type: Application
    Filed: September 26, 2002
    Publication date: February 27, 2003
    Applicant: SHOWA DENKO K.K.
    Inventors: Toshio Morita, Hitoshi Inoue, Kunio Nishimura, Yutaka Suhara, Satoshi Ohshima, Motoo Yumura
  • Patent number: 6489025
    Abstract: A fine carbon fiber having an outer diameter of about 1 to about 80 nm and an aspect ratio of 10 to 30,000, comprising a hollow center portion and a multi-layer sheath structure of a plurality of carbon layers, the layers forming annual rings, wherein the sheath-forming carbon layers form an incomplete sheath, i.e., the carbon layers are partially broken or disrupted in a longitudinal direction, and the outer diameter of the carbon fiber and/or the diameter of the hollow center portion are not uniform in a longitudinal direction. The carbon fiber is obtained by instantaneously reacting a carrier gas at a high temperature and an organic compound gas kept at a temperature below the decomposition temperature of the transition metal compound and has a conductivity equivalent to that of a conventional vapor phase method and is useful as a filler material in resins, rubbers, paints and the like.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: December 3, 2002
    Assignee: Showa Denko K.K.
    Inventors: Toshio Morita, Hitoshi Inoue, Kunio Nishimura, Yutaka Suhara, Satoshi Ohshima, Motoo Yumura
  • Publication number: 20020015845
    Abstract: A fine carbon fiber having an outer diameter of about 1 to about 80 nm and an aspect ratio of 10 to 30,000, comprising a hollow center portion and a multi-layer sheath structure of a plurality of carbon layers, the layers forming annual rings, wherein the sheath-forming carbon layers form an incomplete sheath, i.e., the carbon layers are partially broken or disrupted in a longitudinal direction, and the outer diameter of the carbon fiber and/or the diameter of the hollow center portion are not uniform in a longitudinal direction. The carbon fiber is obtained by instantaneously reacting a carrier gas at a high temperature and an organic compound gas kept at a temperature below the decomposition temperature of the transition metal compound and has a conductivity equivalent to that of a conventional vapor phase method and is useful as a filler material in resins, rubbers, paints and the like.
    Type: Application
    Filed: April 12, 2001
    Publication date: February 7, 2002
    Inventors: Toshio Morita, Hitoshi Inoue, Kunio Nishimura, Yutaka Suhara, Satoshi Ohshima, Motoo Yumura