Patents by Inventor Moussa N'Gom

Moussa N'Gom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11773004
    Abstract: The present invention relates to a laser cutting technology for cutting and separating thin substrates of transparent materials, for example to cutting of display glass compositions mainly used for production of Thin Film Transistors (TFT) devices. The described laser process can be used to make straight cuts, for example at a speed of >0.25 m/sec, to cut sharp radii outer corners (<1 mm), and to create arbitrary curved shapes including forming interior holes and slots. A method of laser processing an alkaline earth boro-aluminosilicate glass composite workpiece includes focusing a pulsed laser beam into a focal line. The pulsed laser produces pulse bursts with 5-20 pulses per pulse burst and pulse burst energy of 300-600 micro Joules per burst. The focal line is directed into the glass composite workpiece, generating induced absorption within the material.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: October 3, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Thomas Hackert, Xinghua Li, Sasha Marjanovic, Moussa N'Gom, David Andrew Pastel, Garrett Andrew Piech, Daniel Schnitzler, Robert Stephen Wagner, James Joseph Watkins
  • Patent number: 11556039
    Abstract: Disclosed herein are glass articles coated on at least one surface with an electrochromic layer and comprising minimal regions of laser damage, and methods for laser processing such glass articles. Insulated glass units comprising such coated glass articles are also disclosed herein.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: January 17, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Moussa N'Gom, David Andrew Pastel, Garrett Andrew Piech, Robert Stephen Wagner, Chad Michael Wilcox
  • Patent number: 11065860
    Abstract: A method of printing a 3D object includes feeding one or more preformed materials from a feed outlet into a build zone in which a hot spot is located and using the hot spot to selectively heat the one or more preformed materials to a viscous state. Object layers are formed by depositing portions of the preformed materials on a build surface, or on another object layer on the build surface, while effecting relative motion between the build surface and the feed outlet.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: July 20, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Christopher William Drewnowski, Michael Thomas Gallagher, Scott Michael Jarvis, Xinghua Li, Moussa N'Gom, Robert Stephen Wagner, Nicholas Ryan Wheeler
  • Patent number: 10513455
    Abstract: An apparatus includes a fiber feeding system to deposit a fiber on an edge of the glass article and a laser system. The laser system is positioned to project a first and a second laser beam onto a first and a second side of the fiber, respectively. The laser system is positioned to project a third laser beam onto the edge of the glass article. A method includes advancing a glass article relative to a fiber; positioning the fiber in relation to an edge of the glass article, contacting a first side of the fiber with a first laser beam, contacting a second side of the fiber with a second laser beam, depositing the fiber on the edge of the glass article, and contacting the edge of the glass article with a third laser beam.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: December 24, 2019
    Assignee: Corning Incorporated
    Inventors: Thomas Roger Cook, Christopher William Drewnowski, Peter Knowles, Geunsik Lim, Moussa N'Gom, Irene Mona Peterson, Robert Stephen Wagner
  • Publication number: 20190177203
    Abstract: Systems and methods for laser-cutting thermally tempered substrates are disclosed. In one embodiment, a method of separating a thermally tempered substrate includes directing a laser beam focal line such that at least a portion of the laser beam focal line is within a bulk of the thermally tempered substrate. The focused pulsed laser beam is pulsed to form a sequence of pulse bursts comprising one or more sub-pulses. The laser beam focal line produces a damage track within the bulk of the tempered substrate along the laser beam focal line. Relative motion is provided between the focused pulsed laser beam and the tempered substrate such that the pulsed laser beam forms a sequence of damage tracks within the tempered substrate. Individual damage tracks of the sequence of damage tracks are separated by a lateral spacing, and one or more microcracks connect adjacent damage tracks of the sequence of damage tracks.
    Type: Application
    Filed: February 15, 2019
    Publication date: June 13, 2019
    Inventors: Moussa N'Gom, Garrett Andrew Piech, James Joseph Watkins, Kristopher Allen Wieland, Chad Michael Wilcox
  • Patent number: 10252931
    Abstract: Systems and methods for laser-cutting thermally tempered substrates are disclosed. In one embodiment, a method of separating a thermally tempered substrate includes directing a laser beam focal line such that at least a portion of the laser beam focal line is within a bulk of the thermally tempered substrate. The focused pulsed laser beam is pulsed to form a sequence of pulse bursts comprising one or more sub-pulses. The laser beam focal line produces a damage track within the bulk of the tempered substrate along the laser beam focal line. Relative motion is provided between the focused pulsed laser beam and the tempered substrate such that the pulsed laser beam forms a sequence of damage tracks within the tempered substrate. Individual damage tracks of the sequence of damage tracks are separated by a lateral spacing, and one or more microcracks connect adjacent damage tracks of the sequence of damage tracks.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: April 9, 2019
    Assignee: Corning Incorporated
    Inventors: Moussa N'Gom, Garrett Andrew Piech, James Joseph Watkins, Kristopher Allen Wieland, Chad Michael Wilcox
  • Publication number: 20180237329
    Abstract: A method of printing a 3D object includes feeding one or more preformed materials from a feed outlet into a build zone in which a hot spot is located and using the hot spot to selectively heat the one or more preformed materials to a viscous state. Object layers are formed by depositing portions of the preformed materials on a build surface, or on another object layer on the build surface, while effecting relative motion between the build surface and the feed outlet.
    Type: Application
    Filed: August 12, 2016
    Publication date: August 23, 2018
    Inventors: Christopher William Drewnowski, Michael Thomas Gallagher, Scott Michael Jarvis, Xinghua Li, Moussa N'Gom, Robert Stephen Wagner, Nicholas Ryan Wheeler
  • Publication number: 20180057390
    Abstract: The present invention relates to a laser cutting technology for cutting and separating thin substrates of transparent materials, for example to cutting of display glass compositions mainly used for production of Thin Film Transistors (TFT) devices. The described laser process can be used to make straight cuts, for example at a speed of >0.25 m/sec, to cut sharp radii outer corners (<1 mm), and to create arbitrary curved shapes including forming interior holes and slots. A method of laser processing an alkaline earth boro-aluminosilicate glass composite workpiece includes focusing a pulsed laser beam into a focal line. The pulsed laser produces pulse bursts with 5-20 pulses per pulse burst and pulse burst energy of 300-600 micro Joules per burst. The focal line is directed into the glass composite workpiece, generating induced absorption within the material.
    Type: Application
    Filed: March 23, 2016
    Publication date: March 1, 2018
    Inventors: Thomas Hackert, Xinghua Li, Sasha Marjanovic, Moussa N'Gom, David Andrew Pastel, Garrett Andrew Piech, Daniel Schnitzler, Robert Stephen Wagner, James Joseph Watkins
  • Publication number: 20170355633
    Abstract: An apparatus includes a fiber feeding system to deposit a fiber on an edge of the glass article and a laser system. The laser system is positioned to project a first and a second laser beam onto a first and a second side of the fiber, respectively. The laser system is positioned to project a third laser beam onto the edge of the glass article. A method includes advancing a glass article relative to a fiber; positioning the fiber in relation to an edge of the glass article, contacting a first side of the fiber with a first laser beam, contacting a second side of the fiber with a second laser beam, depositing the fiber on the edge of the glass article, and contacting the edge of the glass article with a third laser beam.
    Type: Application
    Filed: October 29, 2015
    Publication date: December 14, 2017
    Inventors: Thomas Roger Cook, Christopher William Drewnowski, Peter Knowles, Geunsik Lim, Moussa N'Gom, Irene Mona Peterson, Robert Stephen Wagner
  • Publication number: 20170023841
    Abstract: Disclosed herein are glass articles coated on at least one surface with an electrochromic layer and comprising minimal regions of laser damage, and methods for laser processing such glass articles. Insulated glass units comprising such coated glass articles are also disclosed herein.
    Type: Application
    Filed: October 7, 2016
    Publication date: January 26, 2017
    Applicant: View Inc.
    Inventors: Moussa N'Gom, David Andrew Pastel, Garrett Andrew Piech, Robert Stephen Wagner, Chad Michael Wilcox
  • Publication number: 20160200621
    Abstract: Systems and methods for laser-cutting thermally tempered substrates are disclosed. In one embodiment, a method of separating a thermally tempered substrate includes directing a laser beam focal line such that at least a portion of the laser beam focal line is within a bulk of the thermally tempered substrate. The focused pulsed laser beam is pulsed to form a sequence of pulse bursts comprising one or more sub-pulses. The laser beam focal line produces a damage track within the bulk of the tempered substrate along the laser beam focal line. Relative motion is provided between the focused pulsed laser beam and the tempered substrate such that the pulsed laser beam forms a sequence of damage tracks within the tempered substrate. Individual damage tracks of the sequence of damage tracks are separated by a lateral spacing, and one or more microcracks connect adjacent damage tracks of the sequence of damage tracks.
    Type: Application
    Filed: January 12, 2016
    Publication date: July 14, 2016
    Inventors: Moussa N'Gom, Garrett Andrew Piech, James Joseph Watkins, Kristopher Allen Wieland, Chad Michael Wilcox