Patents by Inventor Mridula (Babli) Kapur
Mridula (Babli) Kapur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240209193Abstract: A bimodal polyethylene-based composition that is useful for making under film extrusion conditions a film that beneficially has both decreased water vapor transmission rate and decreased haze. The composition comprises an improved design of the composition of the polyethylene blend of a higher molecular weight polyethylene polymer constituent and a lower molecular weight polyethylene polymer constituent and an effective amount of a nucleating agent. Additional embodiments include a method of making the bimodal polyethylene-based composition, a formulation comprising the bimodal polyethylene-based composition and at least one additive, a method of making a manufactured article from the bimodal polyethylene-based composition or formulation; the manufactured article made thereby, use of the bimodal polyethylene-based composition for protecting a moisture-sensitive material, and a sealed package made therefrom.Type: ApplicationFiled: August 19, 2020Publication date: June 27, 2024Inventors: Alexander Williamson, Andrew T. Heitsch, Stephanie M. Whited, Mridula Babli Kapur
-
Publication number: 20230106941Abstract: Polyethylene formulations and articles produced therefrom, comprise a multimodal high density polyethylene (HDPE) composition, and 0.1 ppm to 300 ppm of a nucleating agent, wherein the multimodal HDPE composition comprises a density of 0.940 g/cm3 to 0.970 g/cm3 when measured according to ASTM D792, and a melt index (I2) of 0.1 g/10 min. to 10.0 g/10 min. when measured according to ASTM D1238 at 190° C. and a 2.16 kg load, and wherein the multimodal HDPE composition comprises an infrared cumulative detector fraction (CDFIR) of greater than 0.27 and an infrared cumulative detector fraction to light scattering cumulative detector fraction ratio (CDFIR/CDFLS) from 0.7 to 2.0.Type: ApplicationFiled: October 6, 2022Publication date: April 6, 2023Applicant: Dow Global Technologies LLCInventors: Yijian Lin, John L. Sugden, Mridula Babli Kapur, David T. Gillespie
-
Patent number: 11466147Abstract: The present disclosure provides a composition containing a polymeric blend. The polymeric blend contains (A) from 50 wt % to 90 wt % of a first ethylene-based polymer having a density from 0.895 g/cc to 0.905 g/cc; and a melt index from 0.1 g/10 min to 50 g/10 min; (B) from 8 wt % to 48 wt % of a second ethylene-based polymer having a density from 0.935 g/cc to 0.967 g/cc; and a melt index from 0.1 g/10 min to 180 g/10 min; and from 0.01 wt % to 2.0 wt % of a slip agent, based on the total weight of the polymeric blend. The polymeric blend has (i) an overall density from 0.900 g/cc to 0.925 g/cc; and (ii) a coefficient of friction (COF) after aging for 1 week at 60° C. from 0.001 to 0.400. The present disclosure also provides a multilayer film with a first layer containing the composition.Type: GrantFiled: June 4, 2018Date of Patent: October 11, 2022Assignee: Dow Global Technologies LLCInventors: Rahul Sharma, Jong-Young Lee, Jeffrey D. Weinhold, Mridula Babli Kapur
-
Publication number: 20220169762Abstract: A bimodal poly(ethylene-co-1-alkene) copolymer comprising a higher molecular weight poly(ethylene-co-1-alkene) copolymer component and a lower molecular weight poly(ethylene-co-1-alkene) copolymer component. The copolymer is characterized by a unique combination of features comprising, or reflected in, its density; molecular weight distributions; component weight fraction amount; viscoelastic properties; and environmental stress-cracking resistance. Additional inventive embodiments include a method of making the copolymer, a formulation comprising the copolymer and at least one additive that is different than the copolymer, a method of making a manufactured article from the copolymer or formulation; the manufactured article made thereby, and use of the manufactured article.Type: ApplicationFiled: April 28, 2020Publication date: June 2, 2022Inventors: Shadid Askar, Peter S. Martin, Bo Liu, John F. Szul, Roger L. Kuhlman, Mridula Babli Kapur
-
Publication number: 20220162358Abstract: A bimodal poly(ethylene-co-1-alkene) copolymer comprising a higher molecular weight poly(ethylene-co-1-alkene) copolymer component and a lower molecular weight poly(ethylene-co-1-alkene) copolymer component. The copolymer is characterized by a unique combination of features comprising, or reflected in, its density; molecular weight distributions; component weight fraction amount; and viscoelastic properties; and at least one of environmental stress-cracking resistance and resin swell. Additional inventive embodiments include a method of making the copolymer, a formulation comprising the copolymer and at least one additive that is different than the copolymer, a method of making a manufactured article from the copolymer or formulation; the manufactured article made thereby, and use of the manufactured article.Type: ApplicationFiled: April 28, 2020Publication date: May 26, 2022Inventors: Shadid Askar, Peter S. Martin, Bo Liu, John F. Szul, Roger L. Kuhlman, Mridula Babli Kapur
-
Patent number: 11046841Abstract: Polyethylene formulations, articles produced therefrom, and methods of making articles are provided. The polyethylene formulation includes a multimodal high density polyethylene (HDPE) composition, and 1 ppm to 10,000 ppm of a nucleating agent, wherein the multimodal HDPE composition comprises a density of 0.940 g/cm3 to 0.970 g/cm3 when measured according to ASTM D792, and a melt index (I2) of 0.01 g/10 min. to 1.0 g/10 min. when measured according to ASTM D1238 at 190° C. and a 2.16 kg load, and wherein the multimodal HDPE composition comprises an infrared cumulative detector fraction (CDFIR) of greater than 0.27 and an infrared cumulative detector fraction to light scattering cumulative detector fraction ratio (CDFIR/CDFLS) from 0.7 to 2.0.Type: GrantFiled: December 15, 2016Date of Patent: June 29, 2021Assignee: Dow Global Technologies LLCInventors: Yijian Lin, Mridula Babli Kapur, David T. Gillespie, John L. Sugden, Todd A. Hogan
-
Publication number: 20210079130Abstract: A zirconocene-titanocene catalyst system comprising a zirconocene catalyst and a titanocene catalyst; polyolefins; methods of making and using same; and articles containing same.Type: ApplicationFiled: December 13, 2018Publication date: March 18, 2021Inventors: Linfeng Chen, David M. Pearson, Micchael W. Tilston, Mridula Babli Kapur, Robert N. Reib, Stephanie M. Whited
-
Publication number: 20210079129Abstract: A hafnocene-titanocene catalyst system comprising a hafnocene catalyst and a titanocene catalyst; polyolefins; methods of making and using same; and articles containing same.Type: ApplicationFiled: December 13, 2018Publication date: March 18, 2021Inventors: Linfeng Chen, David M. Pearson, Michael W. Tilston, Mridula Babli Kapur, Robert N. Reib, Stephanie M. Whited
-
Publication number: 20200277474Abstract: Polyethylene formulations, articles produced therefrom, and methods of making articles are provided. The polyethylene formulation includes a multimodal high density polyethylene (HDPE) composition, and 1 ppm to 10,000 ppm of a nucleating agent, wherein the multimodal HDPE composition comprises a density of 0.940 g/cm3 to 0.970 g/cm3 when measured according to ASTM D792, and a melt index (I2) of 0.01 g/10 min. to 1.0 g/10 min. when measured according to ASTM D1238 at 190° C. and a 2.16 kg load, and wherein the multimodal HDPE composition comprises an infrared cumulative detector fraction (CDFIR) of greater than 0.27 and an infrared cumulative detector fraction to light scattering cumulative detector fraction ratio (CDFIR/CDFLS) from 0.7 to 2.0.Type: ApplicationFiled: December 15, 2016Publication date: September 3, 2020Applicant: Dow Global Technologies LLCInventors: Yijian Lin, Mridula Babli Kapur, David T. Gillespie, John L. Sugden, Todd A. Hogan
-
Publication number: 20200131351Abstract: The present disclosure provides a composition containing a polymeric blend. The polymeric blend contains (A) from 50 wt % to 90 wt % of a first ethylene-based polymer having a density from 0.895 g/cc to 0.905 g/cc; and a melt index from 0.1 g/10 min to 50 g/10 min; (B) from 8 wt % to 48 wt % of a second ethylene-based polymer having a density from 0.935 g/cc to 0.967 g/cc; and a melt index from 0.1 g/10 min to 180 g/10 min; and from 0.01 wt % to 2.0 wt % of a slip agent, based on the total weight of the polymeric blend. The polymeric blend has (i) an overall density from 0.900 g/cc to 0.925 g/cc; and (ii) a coefficient of friction (COF) after aging for 1 week at 60° C. from 0.001 to 0.400. The present disclosure also provides a multilayer film with a first layer containing the composition.Type: ApplicationFiled: June 4, 2018Publication date: April 30, 2020Inventors: Rahul Sharma, Jong-Young Lee, Jeffrey D. Weinhold, Mridula Babli Kapur
-
Patent number: 10370527Abstract: A polyethylene composition suitable for use in a living hinge component, the composition comprising a first ethylene-based polymer component, the first ethylene-based polymer component has a density of from 0.91.5 g/cc to less than 0.940 g/cc. and a melt index, I2.16, of less than 5 g/10 min. and a second ethylene-based polymer component, wherein the composition has an overall density of from 0.945 g/cc to 0.960 g/cc and an overall melt index, I2.16, of from 5 g/10 min to 20 g/10 min.Type: GrantFiled: November 5, 2015Date of Patent: August 6, 2019Assignee: Dow Global Technologies LLCInventors: Stephanie M. Whited, Mridula Babli Kapur, Yijian Lin
-
Publication number: 20180371217Abstract: Polyethylene formulations and articles produced therefrom, comprise a multimodal high density polyethylene (HDPE) composition, and 0.1 ppm to 300 ppm of a nucleating agent, wherein the multimodal HDPE composition comprises a density of 0.940 g/cm3 to 0.970 g/cm3 when measured according to ASTM D792, and a melt index (I2) of 0.1 g/10 min. to 10.0 g/10 min. when measured according to ASTM D1238 at 190° C. and a 2.16 kg load, and wherein the multimodal HDPE composition comprises an infrared cumulative detector fraction (CDFIR) of greater than 0.27 and an infrared cumulative detector fraction to light scattering cumulative detector fraction ratio (CDFIR/CDFLS) from 0.7 to 2.0.Type: ApplicationFiled: December 15, 2016Publication date: December 27, 2018Applicant: Dow Global Technologies LLCInventors: Lin Yijian, John L. Sugden, Mridula Babli Kapur, David T. Gillespie
-
Patent number: 9873958Abstract: Fibers made a polyethylene composition, and method of making the same. The polyethylene composition comprises less than or equal to 100 percent by weight of the units derived from ethylene and less than 20 percent by weight of units derived from one or more ?-olefin comonomers; wherein said polyethylene composition has a density in the range of 0.930 to 0.960 g/cm3, a molecular weight distribution (Mw/Mn) in the range of 1.70 to 3.5, a melt index (I2) in the range of 1 to 300 g/10 minutes, a molecular weight distribution (Mz/Mw) in the range of less than 2.5, a shear viscosity in the range of 20 to 250 Pascal-s at 3000 s?1 shear rate measured at 190° C., vinyl unsaturation of less than 0.1 vinyls per one thousand carbon atoms present in the backbone of said composition; and wherein the fiber is a monocomponent meltspun fiber.Type: GrantFiled: February 20, 2017Date of Patent: January 23, 2018Assignee: Dow Global Technologies LLCInventors: Randy E. Pepper, Mridula Babli Kapur, Gert J. Claasen, Edward N. Knickerbocker, Nathan J. Wiker, William J. Michie, Jr., Mark B. Davis
-
Publication number: 20170342244Abstract: A polyethylene composition suitable for use in a living hinge component, the composition comprising a first ethylene-based polymer component, the first ethylene-based polymer component has a density of from 0.91.5 g/cc to less than 0.940 g/cc. and a melt index, I2.16, of less than 5 g/10 min. and a second ethylene-based polymer component, wherein the composition has an overall density of from 0.945 g/cc to 0.960 g/cc and an overall melt index, I2.16, of from 5 g/10 min to 20 g/10 min.Type: ApplicationFiled: November 5, 2015Publication date: November 30, 2017Inventors: Stephanie M. Whited, Mridula Babli Kapur, Yijian Lin
-
Publication number: 20170159211Abstract: Fibers made a polyethylene composition, and method of making the same. The polyethylene composition comprises less than or equal to 100 percent by weight of the units derived from ethylene and less than 20 percent by weight of units derived from one or more ?-olefin comonomers; wherein said polyethylene composition has a density in the range of 0.930 to 0.960 g/cm3, a molecular weight distribution (Mw/Mn) in the range of 1.70 to 3.5, a melt index (I2) in the range of 1 to 300 g/10 minutes, a molecular weight distribution (Mz/Mw) in the range of less than 2.5, a shear viscosity in the range of 20 to 250 Pascal-s at 3000 s?1 shear rate measured at 190° C., vinyl unsaturation of less than 0.1 vinyls per one thousand carbon atoms present in the backbone of said composition; and wherein the fiber is a monocomponent meltspun fiber.Type: ApplicationFiled: February 20, 2017Publication date: June 8, 2017Inventors: Randy E. Pepper, Mridula Babli Kapur, Gert J. Claasen, Edward N. Knickerbocker, Nathan J. Wiker, William J. Michie, JR., Mark B. Davis
-
Publication number: 20170101495Abstract: The invention provides an ethylene-based polymer comprising the following properties: a) a ZSVR value from 1.2 to 2.6, b) a MWD from 1.5 to 2.8, and c) a tan delta (0.1 rad/s; 190 C) from 5.0 to 50.Type: ApplicationFiled: June 29, 2015Publication date: April 13, 2017Inventors: Mridula Babli Kapur, Mehmet Demirors, Philip P. Fontaine, Jerzy Klosin, Endre Szuromi, Carl N. Iverson, Zach T. Rickaway, Andrew J. Young, Susan G. Brown, Ruth Figueroa
-
Publication number: 20170101494Abstract: The invention provides a process to form an olefin-based polymer, said process comprising polymerizing at least one olefin in the presence of at least one catalyst system comprising the reaction product of the following: A) at least one cocatalyst; and B) a procatalyst comprising a metal-ligand complex of Formula (I), as described herein: (Formula I).Type: ApplicationFiled: June 29, 2015Publication date: April 13, 2017Applicant: Dow Global Technologies LLCInventors: Philip P. Fontaine, Jerzy Klosin, Endre Szuromi, Carl N. Iverson, Zach T. Rickaway, Andrew J. Young, Susan G. Brown, Ruth Figueroa, Mehmet Demirors, Mridula Babli Kapur
-
Publication number: 20170081444Abstract: The invention provides a composition comprising a first composition, comprising at least one ethylene-based polymer, and wherein the first composition comprises a MWCDI value greater than 0.9, and a melt index ratio I10/I2 that meets the following equation: I10/I2?7.0?1.2×log (I2). The invention also provides a process to form a composition comprising at least two ethylene-based polymers, said process comprising the following: polymerizing ethylene, and optionally at least one comonomer, in solution, in the presence of a catalyst system comprising a metal-ligand complex of Structure I, as described herein, to form a first ethylene-based polymer; and polymerizing ethylene, and optionally at least one comonomer, in the presence of a catalyst system comprising a Ziegler/Natta catalyst, to form a second ethylene-based polymer.Type: ApplicationFiled: June 26, 2015Publication date: March 23, 2017Inventors: Jian Wang, Pradeep Jain, Mehmet Demirors, Douglas S. Ginger, Anthony J. Castelluccio, Mridula Babli Kapur
-
Ethylene-based polymer compositions, methods of making the same, and articles prepared from the same
Patent number: 9175111Abstract: The invention provides a composition comprising a blend, which comprises a high molecular weight ethylene-based polymer, and a low molecular weight ethylene-based polymer, and wherein the high molecular weight ethylene-based polymer has a density less than, or equal to, 0.955 g/cm3, and wherein the blend has a high load melt index (I21) greater than, or equal to, 15 g/10 min, and wherein the blend has a molecular weight distribution (Mw/Mn) greater than, or equal to, 15. The invention also provides a composition comprising a blend, which comprises a high molecular weight ethylene-based polymer and a low molecular weight ethylene-based polymer, and wherein the high molecular weight ethylene-based polymer component has a density less than, or equal to, 0.945 g/cm3, and a melt index (I2) less than, or equal to, 0.Type: GrantFiled: December 18, 2008Date of Patent: November 3, 2015Assignee: Dow Global Technologies LLCInventors: Mridula (Babli) Kapur, Robert J. Jorgensen, Burkhard E. Wagner, William J. Michie, Jr. -
Patent number: 8129472Abstract: The invention provides compositions for blow molding applications and other applications, where such compositions comprise a high molecular weight ethylene interpolymer and a low molecular weight ethylene polymer, and where the high molecular weight ethylene interpolymer has a density from 0.920 g/cm3 to 0.950 g/cm3, and an I21 from 0.05 to 1 dg/min, and where the low molecular weight ethylene polymer has density from 0.965 g/cm3 to 0.985 g/cm3, and an I2 from 600 to 2000 dg/min. The composition has a density from 0.950 g/cm3 to 0.970 g/cm3, and comprises greater from 45 to 80 weight percent of the high molecular component, and from 20 to 55 weight percent of the low molecular weight component, based on the sum weight of the high molecular weight component and the low molecular weight component. The invention also provides for methods of preparing said compositions and for articles prepared from the same.Type: GrantFiled: April 3, 2007Date of Patent: March 6, 2012Assignee: Dow Global Technologies LLCInventors: Michael D. Turner, Mridula (Babli) Kapur