Patents by Inventor Mrinal K. Mandal

Mrinal K. Mandal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7480416
    Abstract: Compact and efficient hardware architectures for implementing lifting-based DWTs, including 1-D and 2-D versions of recursive and dual scan architectures. The 1-D recursive architecture exploits interdependencies among the wavelet coefficients by interleaving, on alternate clock cycles using the same datapath hardware, the calculation of higher order coefficients along with that of the first-stage coefficients. The resulting hardware utilization exceeds 90% in the typical case of a 5-stage 1-D DWT operating on 1024 samples. The 1-D dual scan architecture achieves 100% datapath hardware utilization by processing two independent data streams together using shared functional blocks. The 2-D recursive architecture is roughly 25% faster than conventional implementations, and it requires a buffer that stores only a few rows of the data array instead of a fixed fraction (typically 25% or more) of the entire array.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: January 20, 2009
    Assignee: Telecommunications Research Laboratories
    Inventors: Hongyu Liao, Mrinal K. Mandal, Bruce F. Cockburn
  • Publication number: 20040223655
    Abstract: Compact and efficient hardware architectures for implementing lifting-based DWTs, including 1-D and 2-D versions of recursive and dual scan architectures. The 1-D recursive architecture exploits interdependencies among the wavelet coefficients by interleaving, on alternate clock cycles using the same datapath hardware, the calculation of higher order coefficients along with that of the first-stage coefficients. The resulting hardware utilization exceeds 90% in the typical case of a 5-stage 1-D DWT operating on 1024 samples. The 1-D dual scan architecture achieves 100% datapath hardware utilization by processing two independent data streams together using shared functional blocks. The 2-D recursive architecture is roughly 25% faster than conventional implementations, and it requires a buffer that stores only a few rows of the data array instead of a fixed fraction (typically 25% or more) of the entire array.
    Type: Application
    Filed: May 9, 2003
    Publication date: November 11, 2004
    Applicant: Telecommunications Research Laboratories
    Inventors: Hongyu Liao, Mrinal K. Mandal, Bruce F. Cockburn