Patents by Inventor Mu Wu

Mu Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10201296
    Abstract: Embodiments provide apparatus, systems, and methods adapted to communicate analyte data and/or related information. In a first aspect, the apparatus includes a transmitter/receiver unit which is configurable as either a transmitter or a receiver. The transmitter/receiver unit may be coupled to an on-body sensor and may be configured as a transmitter, or may be coupled to a management unit and may be configured as a receiver as part of a continuous analyte monitoring system. Analyte data communication systems and methods are provided, as are other aspects.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: February 12, 2019
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Hoi-Cheong Steve Sun, Paul M. Ripley, Mu Wu
  • Patent number: 10168227
    Abstract: A system and method for rapidly determining ambient temperature in a fluid-analyte meter. The meter includes a housing defining an interior space and an area for receiving a fluid sample. A processor and a first temperature sensor are disposed within the interior space of said the housing. A second temperature sensor is disposed on the housing. One or more processors are configured to determine a first temperature value from temperature data received from the first temperature sensor. The processor(s) are also configured to apply a variable current to a temperature-adjustment source such that the second temperature sensor is adjusted to a predetermined steady-state temperature value different from the first temperature value. The processor(s) are further configured to determine an ambient temperature of an exterior space of the housing based on the applied variable current, pre-determined steady-state temperature, and received first temperature values.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: January 1, 2019
    Assignee: ASCENSIA DIABETES CARE HOLDINGS AG
    Inventor: Mu Wu
  • Publication number: 20180177438
    Abstract: Embodiments herein provide detection of contamination at one or more contacts of a sensor system. The sensor system includes a sensor assembly and an electronics assembly communicatively coupled together by one or more contacts. The sensor assembly passes a sensor signal to the electronics assembly for further processing. The electronics assembly includes a detection contact for detecting contamination on or near one or more contacts of the sensor assembly and/or the electronics assembly. A switch selectively couples the detection contact to a bias voltage during a measurement mode and to a reference voltage during a detection mode, the reference voltage being different from the bias voltage. A method of contamination detection includes switching the electronics assembly between the measurement mode and the detection mode, and monitoring for a change in the output signal received by the electronics assembly.
    Type: Application
    Filed: February 23, 2018
    Publication date: June 28, 2018
    Inventors: Igor Gofman, Mu Wu
  • Publication number: 20180106688
    Abstract: Methods and systems accurately determine an analyte concentration in a fluid sample. In an example embodiment, a receiving port receives a test sensor. The test sensor includes a fluid-receiving area for receiving a fluid sample. The fluid-receiving area contains a reagent that produces a measurable reaction with an analyte in the fluid sample. The test sensor has a test-sensor temperature and the reagent has a reagent temperature. A measurement system measures the reaction between the reagent and the analyte. A temperature-measuring system measures the test sensor temperature when the test sensor is received into the receiving port. A concentration of the analyte in the fluid sample is determined according to the measurement of the reaction and the measurement of the test sensor temperature. A diagnostic system determines an accuracy of the temperature-measuring system. The calculation of the analyte concentration may be adjusted according to the accuracy of temperature-measuring system.
    Type: Application
    Filed: December 14, 2017
    Publication date: April 19, 2018
    Inventors: Narasinha Parasnis, Hoi-Cheong Steve Sun, Mu Wu
  • Patent number: 9936903
    Abstract: Embodiments herein provide detection of contamination at one or more contacts of a sensor system. The sensor system includes a sensor assembly and an electronics assembly communicatively coupled together by one or more contacts. The sensor assembly passes a sensor signal to the electronics assembly for further processing. The electronics assembly includes a detection contact for detecting contamination on or near one or more contacts of the sensor assembly and/or the electronics assembly. A switch selectively couples the detection contact to a bias voltage during a measurement mode and to a reference voltage during a detection mode, the reference voltage being different from the bias voltage. A method of contamination detection includes switching the electronics assembly between the measurement mode and the detection mode, and monitoring for a change in the output signal received by the electronics assembly.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: April 10, 2018
    Inventors: Igor Gofman, Mu Wu
  • Publication number: 20180087972
    Abstract: A system and method for rapidly determining ambient temperature in a fluid-analyte meter. The meter includes a housing defining an interior space and an area for receiving a fluid sample. A processor and a first temperature sensor are disposed within the interior space of said the housing. A second temperature sensor is disposed on the housing. One or more processors are configured to determine a first temperature value from temperature data received from the first temperature sensor. The processor(s) are also configured to apply a variable current to a temperature-adjustment source such that the second temperature sensor is adjusted to a predetermined steady-state temperature value different from the first temperature value. The processor(s) are further configured to determine an ambient temperature of an exterior space of the housing based on the applied variable current, pre-determined steady-state temperature, and received first temperature values.
    Type: Application
    Filed: November 21, 2017
    Publication date: March 29, 2018
    Inventor: Mu Wu
  • Patent number: 9874481
    Abstract: Methods and systems accurately determine an analyte concentration in a fluid sample. In an example embodiment, a receiving port receives a test sensor. The test sensor includes a fluid-receiving area for receiving a fluid sample. The fluid-receiving area contains a reagent that produces a measurable reaction with an analyte in the fluid sample. The test sensor has a test-sensor temperature and the reagent has a reagent temperature. A measurement system measures the reaction between the reagent and the analyte. A temperature-measuring system measures the test sensor temperature when the test sensor is received into the receiving port. A concentration of the analyte in the fluid sample is determined according to the measurement of the reaction and the measurement of the test sensor temperature. A diagnostic system determines an accuracy of the temperature-measuring system. The calculation of the analyte concentration may be adjusted according to the accuracy of temperature-measuring system.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: January 23, 2018
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Narasinha Parasnis, Hoi-Cheong Steve Sun, Mu Wu
  • Publication number: 20180018430
    Abstract: A portable data-management system may be easily employed with multiple processing devices by eliminating the need to pre-install additional programs, agents, device drivers, or other software components on the hosts. A portable storage device contains software for a data-management application, which receives and processes test data from a meter that measures an analyte. The portable device may employ an interface protocol that makes the portable device immediately compatible with different operating systems and hardware configurations. Once the portable device is connected to the host, the data-management application can be automatically launched. The convenience and portability of a data-management system may be enhanced by integrating advanced data processing and display features with the portable device. The users may access some advanced presentations of health data without having to launch the data-management application on a separate host.
    Type: Application
    Filed: May 31, 2017
    Publication date: January 18, 2018
    Inventors: Darren Brown, Jun Chen, Igor Gofman, Steven B. Harris, Paul L. Inman, Richard Kates, Qiong Li, Harris Lieber, Paul M. Ripley, Gregory Stefkovic, Hoi-Cheong Steve Sun, Mu Wu, Raymond Yao, Simin Yao
  • Patent number: 9851261
    Abstract: A system and method for rapidly determining ambient temperature in a fluid-analyte meter. The meter includes a housing defining an interior space and an area for receiving a fluid sample. A processor and a first temperature sensor are disposed within the interior space of said the housing. A second temperature sensor is disposed on the housing. One or more processors are configured to determine a first temperature value from temperature data received from the first temperature sensor. The processor(s) are also configured to apply a variable current to a temperature-adjustment source such that the second temperature sensor is adjusted to a predetermined steady-state temperature value different from the first temperature value. The processor(s) are further configured to determine an ambient temperature of an exterior space of the housing based on the applied variable current, pre-determined steady-state temperature, and received first temperature values.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: December 26, 2017
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventor: Mu Wu
  • Publication number: 20170292930
    Abstract: In some aspects, an analyte sensor is provided for detecting an analyte concentration level in a bio-fluid sample. The analyte sensor has a base, a first electrode and a second electrode wherein a thermocouple portion is provided integral with the second electrode thereby enabling on-sensor temperature measurement capability. In some embodiments, two and only two electrical contact engagement portions are provided thereby simplifying electrical contact. Manufacturing methods and systems utilizing the analyte sensors are provided, as are numerous other aspects.
    Type: Application
    Filed: June 27, 2017
    Publication date: October 12, 2017
    Inventors: Hoi-Cheong Steve Sun, John P. Creaven, Mu Wu, Paul M. Ripley, Steven C. Charlton
  • Publication number: 20170201931
    Abstract: Embodiments include determining a reference value on a first device; broadcasting the reference value from the first device; connecting the first device to a second device if the second device requests data from the first device; transmitting any new data if the second device requests data from the first device; generating and broadcasting a new reference value if the first device has new data; broadcasting the reference value from the first device again if the first device does not have new data; receiving a reference value in the second device from the first device; and if the received reference value does not match the stored reference value then transmitting a request from the second device for new data from the first device, receiving new data from the first device into the second device, and storing the received reference value as a new stored reference value. Numerous other aspects are provided.
    Type: Application
    Filed: October 27, 2014
    Publication date: July 13, 2017
    Applicant: ASCENSIA DIABETES CARE HOLDINGS AG
    Inventors: Todd Swanzey, Greg R. Stefkovic, Qiang Fu, Mu Wu
  • Patent number: 9689832
    Abstract: In some aspects, an analyte sensor is provided for detecting an analyte concentration level in a bio-fluid sample. The analyte sensor has a base, a first electrode and a second electrode wherein a thermocouple portion is provided integral with the second electrode thereby enabling on-sensor temperature measurement capability. In some embodiments, two and only two electrical contact engagement portions are provided thereby simplifying electrical contact. Manufacturing methods and systems utilizing the analyte sensors are provided, as are numerous other aspects.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: June 27, 2017
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Hoi-Cheong Steve Sun, John P. Creaven, Mu Wu, Paul M. Ripley, Steven C. Charlton
  • Publication number: 20170161440
    Abstract: A portable data-management system may be easily employed with multiple processing devices by eliminating the need to pre-install additional programs, agents, device drivers, or other software components on the hosts. A portable storage device contains software for a data-management application, which receives and processes test data from a meter that measures an analyte. The portable device may employ an interface protocol that makes the portable device immediately compatible with different operating systems and hardware configurations. Once the portable device is connected to the host, the data-management application can be automatically launched. The convenience and portability of a data-management system may be enhanced by integrating advanced data processing and display features with the portable device. The users may access some advanced presentations of health data without having to launch the data-management application on a separate host.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 8, 2017
    Inventors: Darren Brown, Jun Chen, Igor Gofman, Steven B. Harris, Paul L. Inman, Richard Kates, Qiong Li, Harris Lieber, Paul M. Ripley, Gregory Stefkovic, Hoi-Cheong Steve Sun, Mu Wu, Raymond Yao, Simin Yao
  • Patent number: 9664644
    Abstract: A test sensor includes a body, a first conductive trace, a second conductive trace, and a third conductive trace. The body includes a first region that has a fluid-receiving area, a second region separate from the first region, and a first temperature sensing interface disposed at or adjacent to the fluid-receiving area. The fluid-receiving area receives a sample. The first trace is disposed on the body, and at least a portion of the first trace is disposed in the first region. The second and third traces are disposed on the body. The third trace extends from the first to the second regions. The third trace is connected to the first trace at the first temperature sensing interface. The third trace includes a different material than the first trace. A first thermocouple is formed at the first temperature sensing interface. The thermocouple provides temperature data to determine an analyte concentration.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: May 30, 2017
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Steve Hoi-Cheong Sun, Swetha Chinnayelka, John P. Creaven, Andrew J. Edelbrock, Matthew B. Holzer, Narasinha C. Parasnis, Jeffery S. Reynolds, Paul M. Ripley, Steven C. Charlton, Xin Wang, Mu Wu
  • Patent number: 9618967
    Abstract: A portable data-management system may be easily employed with multiple processing devices by eliminating the need to pre-install additional programs, agents, device drivers, or other software components on the hosts. A portable storage device contains software for a data-management application, which receives and processes test data from a meter that measures an analyte. The portable device may employ an interface protocol that makes the portable device immediately compatible with different operating systems and hardware configurations. Once the portable device is connected to the host, the data-management application can be automatically launched. The convenience and portability of a data-management system may be enhanced by integrating advanced data processing and display features with the portable device. The users may access some advanced presentations of health data without having to launch the data-management application on a separate host.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: April 11, 2017
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Darren Brown, Jun Chen, Igor Gofman, Steven B. Harris, Paul L. Inman, Richard Kates, Qiong Li, Harris Lieber, Paul M. Ripley, Gregory Stefkovic, Hoi-Cheong Steve Sun, Mu Wu, Raymond Yao, Simin Yao
  • Publication number: 20160345882
    Abstract: An analyte sensor is provided that comprises a substrate which includes a semiconductor material. Embodiments may include a core of a conductive material, and a cladding of a semiconductor material, in which the cladding may form at least a portion of a conducting path for a working electrode of the analyte sensor. Method of manufacturing and using the analyte sensor are described, as are numerous other aspects.
    Type: Application
    Filed: August 11, 2016
    Publication date: December 1, 2016
    Inventors: Mu Wu, Jiangfeng Fei, Serban Peteu, Hoi-Cheong Steve Sun, Raeann Gifford
  • Patent number: 9439585
    Abstract: An analyte sensor is provided that comprises a substrate which includes a semiconductor material. Embodiments may include a core of a conductive material, and a cladding of a semiconductor material, in which the cladding may form at least a portion of a conducting path for a working electrode of the analyte sensor. Method of manufacturing and using the analyte sensor are described, as are numerous other aspects.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: September 13, 2016
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Mu Wu, Jiangfeng Fei, Serban Peteu, Hoi-Cheong Steve Sun, Raeann Gifford
  • Patent number: 9417105
    Abstract: Embodiments herein provide processing of sensor signals (e.g., signals representative of a level of an analyte in a body). An electronics assembly may include a sensor contact configured to receive a sensor signal from a sensor assembly, an integrator circuit configured to provide an integrator output signal representative of the sensor signal integrated from a first time to a second time, and a reset circuit configured to reset the integrator output signal in response to a reset signal. The electronics assembly may also include a processor circuit configured to determine a value of the integrator output signal and to provide the reset signal to the reset circuit when an integration interval has elapsed from the first time. The integration interval may be based at least in part on the integrator output signal.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: August 16, 2016
    Assignee: AgaMatrix, Inc.
    Inventors: Jun Chen, Igor Gofman, Mu Wu, Christopher Dionisio
  • Publication number: 20160170528
    Abstract: A capacitive touch panel with single sensing layer has a substrate. The substrate has the single sensing layer formed thereon. The sensing layer has multiple electrode sets. Each electrode set has multiple driving electrode rows and multiple receiving electrode rows arranged alternately. The multiple driving electrode rows of one electrode set have different driving electrodes, but different electrode sets have the same multiple driving electrode rows. The multiple receiving electrode rows of one electrode set are consisted of multiple same receiving electrodes, but different electrode sets have different receiving electrode rows. Therefore, using less contacts can also maintained the area and the solution so that the pins on the IC are also decreased. Thus, the volume of the IC is reduced and the packaging cost is also reduced.
    Type: Application
    Filed: November 9, 2015
    Publication date: June 16, 2016
    Applicant: ELAN MICROELECTRONICS CORPORATION
    Inventors: Chia-Mu Wu, Ting-Hsuan Cheng
  • Publication number: 20160092019
    Abstract: A scanning method and device of a single layer capacitive touch panel has a self and mutual capacitive scanning procedures. The single layer capacitive touch panel has multiple electrode groups and shielding units respectively formed between the two corresponding adjacent electrode groups. When the self capacitive scanning procedure is executed, a first driving signal is outputted to each of the electrode groups and each of the shielding units. A self capacitive sensing signal of the driven electrode group is received after then. When the mutual capacitive scanning procedure is executed, a second driving signal is outputted to each of the electrode group and each of the shielding unit is connected to a ground. A mutual capacitive sensing signal from each of the driven electrode groups is received after then. Therefore, the self capacitance value of the self capacitive sensing signal is not increased greatly since the shielding units are not connected to the ground.
    Type: Application
    Filed: September 9, 2015
    Publication date: March 31, 2016
    Applicant: ELAN MICROELECTRONICS CORPORATION
    Inventors: Jung-Shou Huang, Chia-Mu Wu