Patents by Inventor Mu Xu

Mu Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11646813
    Abstract: A digital receiver is configured to process a polarization multiplexed carrier from a communication network. The polarization multiplexed carrier includes a first polarization and a second polarization. The receiver includes a first lane for transporting a first input signal of the first polarization, a second lane for transporting a second input signal of the second polarization, a dynamic phase noise estimation unit disposed within the first lane and configured to determine a phase noise estimate of the first input signal, a first carrier phase recovery portion configured to remove carrier phase noise from the first polarization based on a combination of the first input signal and a function of the determined phase noise estimate, and a second carrier phase recovery portion configured to remove carrier phase noise from the second polarization based on a combination of the second input signal and the function of the determined phase noise estimate.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: May 9, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Zhensheng Jia, Junwen Zhang, Mu Xu, Haipeng Zhang, Luis Alberto Campos, Curtis Dean Knittle
  • Patent number: 11641293
    Abstract: A method and apparatus of distortion compensation during data transmission uses an interweaved look-up table (ILUT) to mitigate residual signal distortions in a signal transmitted over a transmission link. The ILUT interweaves states across both an I and a Q tributary to calculate mean error and an extended symbol basis. As a result, the method works particularly well against two-dimensional distortions like nonlinearity, IQ-imbalance, and quadrature error. The method may be used for either pre-compensation when it is combined with k-means clustering in a transmitter or post-compensation when it is combined with maximum likelihood (ML) detection in a receiver.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: May 2, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Zhensheng Jia, Junwen Zhang, Haipeng Zhang, Luis Alberto Campos
  • Publication number: 20230118770
    Abstract: A full duplex communication network includes an optical transmitter end having a first coherent optics transceiver, an optical receiver end having a second coherent optics transceiver, and an optical transport medium operably coupling the first coherent optics transceiver to the second coherent optics transceiver. The first coherent optics transceiver is configured to (i) transmit a downstream optical signal at a first wavelength, and (ii) simultaneously receive an upstream optical signal at a second wavelength. The second coherent optics transceiver is configured to (i) receive the downstream optical signal, and (ii) simultaneously transmit the upstream optical signal. The first wavelength has a first center frequency separated from a second center frequency of the second wavelength.
    Type: Application
    Filed: October 31, 2022
    Publication date: April 20, 2023
    Inventors: Zhensheng Jia, Luis Alberto Campos, Jing Wang, Mu Xu, Haipeng Zhang, Curtis Dean Knittle
  • Patent number: 11617137
    Abstract: The telecommunications systems, software, and methods are for power-efficient coordinated multipoint transmission, particularly in millimeter-wave small cells. The systems, software, and methods apply portfolio theory to determine an allocation of power to a plurality of transmitters in communication with one or more receivers in a joint transmission configuration, such as a MMW or BF-MMW joint transmission configuration. The systems, software, and methods apply portfolio theory to determine an allocation of power to a plurality of transmitters such that a mean received power, associated with a certain level of variance, is maximized, or the variance of received power, associated with a certain level of mean received power, is minimized.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: March 28, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Bernardo Huberman, Lin Cheng, Mu Xu
  • Patent number: 11564020
    Abstract: A radio frequency (RF) beam transmission component having optical inputs and electrical outputs may include a wavelength selective switch (WSS) that has a plurality of optical WSS outputs. Each optical WSS output may be configured to transmit one or more wavelengths of the incoming optical signals. The RF beam transmission component may include a plurality of photodetectors (PD), each photodetector having an optical PD input coupled to one or more of said plurality of optical WSS outputs and a corresponding electrical output of a plurality of PD electrical outputs. The RF beam transmission component may further include a lens that has a plurality of electrical inputs and each electrical input may be electrically coupled to at least one of the plurality of electrical PD outputs. The lens may further have a plurality of electrical lens output ports.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: January 24, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Luis Alberto Campos, Zhensheng Jia, Lin Cheng
  • Patent number: 11563508
    Abstract: A communications network includes a central communication unit, an optical transport medium, and a plurality of remote radio base stations. The central communication unit generates, within a selected millimeter-wave frequency band, a plurality of adjacent two-tone optical frequency conjugate pairs. Each conjugate pair includes a first optical tone carrying a modulated data signal, and a second optical tone carrying a reference local oscillator signal. The optical transport medium transports the plurality of two-tone conjugate pairs to the plurality of radio base stations, and each base station receives at least one conjugate pair at an optical front end thereof. The optical front end separates the first optical tone from the second optical tone, and converts the first optical tone into a millimeter-wave radio frequency electrical signal.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: January 24, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Ruoyu Sun, Balkan Kecicioglu, Junwen Zhang, Haipeng Zhang, Zhensheng Jia, Luis Alberto Campos
  • Patent number: 11563445
    Abstract: A method for differentiator-based compression of digital data includes (a) multiplying a tap-weight vector by an original data vector to generate a predicted signal, the original data vector comprising N sequential samples of an original signal, N being an integer greater than or equal to one, (b) using a subtraction module, subtracting the predicted signal from a sample of the original signal to obtain an error signal, (c) using a quantization module, quantizing the error signal to obtain a quantized error signal, and (d) updating the tap-weight vector according to changing statistical properties of the original signal.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: January 24, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Zhensheng Jia, Jing Wang, Luis Alberto Campos
  • Patent number: 11546058
    Abstract: A method for chromatic dispersion pre-compensation in an optical communication network includes (1) distorting an original modulated signal according to an inverse of a transmission function of the optical communication network, to generate a compensated signal, (2) modulating a magnitude of an optical signal in response to a magnitude of the compensated signal, and (3) modulating a phase of the optical signal, after modulating the magnitude of the optical signal, in response to a phase of the compensated signal.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: January 3, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Zhensheng Jia, Haipeng Zhang, Luis Alberto Campos, Junwen Zhang
  • Patent number: 11546061
    Abstract: An injection locked transmitter for an optical communication network includes a master seed laser source input substantially confined to a single longitudinal mode, an input data stream, and a laser injected modulator including at least one slave laser having a resonator frequency that is injection locked to a frequency of the single longitudinal mode of the master seed laser source. The laser injected modulator is configured to receive the master seed laser source input and the input data stream, and output a laser modulated data stream.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: January 3, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Junwen Zhang, Zhensheng Jia, Luis Alberto Campos, Haipeng Zhang, Mu Xu, Jing Wang, Curtis Dean Knittle, Chuang Zhou
  • Patent number: 11539442
    Abstract: A method for automatic power and modulation management in a communication network includes (1) generating a management function of (a) mutual information per symbol (MIPS) of the communication network and (b) output power (P) of a transmitter of the communication network, determining a selected MIPS value and a selected P value which achieve a maximum value of the management function, and causing the transmitter of the communication network to operate according to the selected MIPS value and the selected P value.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: December 27, 2022
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Zhensheng Jia, Luis Alberto Campos, Chris Stengrim
  • Patent number: 11539432
    Abstract: A skew compensation system for a coherent optical communication network includes a transmitter modulator having a first driver input for receiving a first signal from a first channel, a second driver input for receiving a second signal from a second channel, a source input for receiving a continuous wave source signal, and a modulation output in communication with an optical transport medium of the network. The system further includes a tunable delay line disposed between the second channel and the second driver input for inserting a pre-determined training sequence onto the second signal prior to the second driver input, and a processor for determining a skew amount between the second signal at the second driver input and the first signal at the first driver input, calculating a pre-compensation value corresponding to the skew amount, and reducing the skew amount at the modulation output according to the pre-compensation value.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: December 27, 2022
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Luis Alberto Campos, Haipeng Zhang, Junwen Zhang, Zhensheng Jia
  • Patent number: 11539441
    Abstract: A method for laser chirp precompensation includes modulating an amplitude of an optical signal, in response to an amplitude of one of (i) a chirp-compensated signal generated via distortion of an original modulated signal according to an inverse of a chirp-response function of a laser and (ii) a first signal derived from the chirp-compensated signal, to yield an amplitude-modulated optical signal. The method also includes modulating a phase of the amplitude-modulated optical signal in response to a phase of one of (i) the chirp-compensated signal and (ii) a second signal derived from the chirp-compensated signal to yield a chirp-compensated optical signal.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: December 27, 2022
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Junwen Zhang, Haipeng Zhang, Zhensheng Jia, Luis Alberto Campos, Curtis D. Knittle
  • Publication number: 20220407602
    Abstract: An echo cancellation method includes steps of (a) extracting phase-distortion estimates, (b) reconstructing an echo signal, (c) generating a clean signal, and (d) producing a primary signal. Step (a) includes extracting, from a first phase signal, a plurality of phase-distortion estimates, the first phase signal having been estimated from an echo-corrupted signal received at a first coherent transceiver of a coherent optical network. Step (b) includes reconstructing an echo signal from the plurality of phase-distortion estimates and a transmitted signal transmitted by the first coherent transceiver. Step (c) includes generating a clean signal as a difference between the reconstructed echo signal and the first phase signal. Step (d) includes producing a primary signal by mapping each of a plurality of clean-phase estimates of the clean signal to one of a plurality of constellation symbols associated with a modulation scheme of the primary signal.
    Type: Application
    Filed: August 22, 2022
    Publication date: December 22, 2022
    Inventors: MU XU, ZHENSHENG JIA, JUNWEN ZHANG, HAIPENG ZHANG, LUIS ALBERTO CAMPOS
  • Patent number: 11489594
    Abstract: A full duplex communication network includes an optical transmitter end having a first coherent optics transceiver, an optical receiver end having a second coherent optics transceiver, and an optical transport medium operably coupling the first coherent optics transceiver to the second coherent optics transceiver. The first coherent optics transceiver is configured to (i) transmit a downstream optical signal at a first wavelength, and (ii) simultaneously receive an upstream optical signal at a second wavelength. The second coherent optics transceiver is configured to (i) receive the downstream optical signal, and (ii) simultaneously transmit the upstream optical signal. The first wavelength has a first center frequency separated from a second center frequency of the second wavelength.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: November 1, 2022
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Zhensheng Jia, Luis Alberto Campos, Jing Wang, Mu Xu, Haipeng Zhang, Curtis Dean Knittle
  • Publication number: 20220337320
    Abstract: An optical full-field transmitter for an optical communications network includes a primary laser source configured to provide a narrow spectral linewidth for a primary laser signal, and a first intensity modulator in communication with a first amplitude data source. The first intensity modulator is configured to output a first amplitude-modulated optical signal from the laser signal. The transmitter further includes a first phase modulator in communication with a first phase data source and the first amplitude-modulated optical signal. The first phase modulator is configured to output a first two-stage full-field optical signal. The primary laser source has a structure based on a III-V compound semiconductor.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Inventors: HAIPENG ZHANG, JUNWEN ZHANG, MU XU, ZHENSHENG JIA, LUIS ALBERTO CAMPOS
  • Publication number: 20220312045
    Abstract: An optical network includes a transmitting portion configured to (i) encode an input digitized sequence of data samples into a quantized sequence of data samples having a first number of digits per sample, (ii) map the quantized sequence of data samples into a compressed sequence of data samples having a second number of digits per sample, the second number being lower than the first number, and (iii) modulate the compressed sequence of data samples and transmit the modulated sequence over a digital optical link. The optical network further includes a receiving portion configured to (i) receive and demodulate the modulated sequence from the digital optical link, (ii) map the demodulated sequence from the second number of digits per sample into a decompressed sequence having the first number of digits per sample, and (iii) decode the decompressed sequence.
    Type: Application
    Filed: June 13, 2022
    Publication date: September 29, 2022
    Inventors: ZHENSHENG JIA, LUIS ALBERTO CAMPOS, MU XU, JING WANG
  • Patent number: 11456910
    Abstract: A carrier-phase recovery method includes: (i) applying a first carrier-phase recovery algorithm to complex-valued symbols of a signal received by a product detector, yielding coarse phase-estimates, the signal being modulated per an M-QAM scheme; (ii) modelling the coarse phase-estimates as a weighted sum of M probability-density functions of an M-component mixture model; (iii) optimizing the M probability-density functions with an expectation-maximization algorithm to yield M optimized probability-density functions; (iv) mapping, based on the M optimized probability-density functions, the coarse phase-estimates to one of M symbols corresponding to the QAM scheme, each coarse phase-estimate mapped to a same symbol belonging to a same one of M clusters; (v) applying a second carrier-phase recovery algorithm to each of the M clusters to generate refined phase-estimates each corresponding to a respective coarse phase-estimate; and (vi) mapping, based on the M optimized probability-density functions, each refined
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: September 27, 2022
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Zhensheng Jia
  • Patent number: 11424828
    Abstract: An echo cancellation method includes steps of (a) extracting phase-distortion estimates, (b) reconstructing an echo signal, (c) generating a clean signal, and (d) producing a primary signal. Step (a) includes extracting, from a first phase signal, a plurality of phase-distortion estimates, the first phase signal having been estimated from an echo-corrupted signal received at a first coherent transceiver of a coherent optical network. Step (b) includes reconstructing an echo signal from the plurality of phase-distortion estimates and a transmitted signal transmitted by the first coherent transceiver. Step (c) includes generating a clean signal as a difference between the reconstructed echo signal and the first phase signal. Step (d) includes producing a primary signal by mapping each of a plurality of clean-phase estimates of the clean signal to one of a plurality of constellation symbols associated with a modulation scheme of the primary signal.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: August 23, 2022
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Zhensheng Jia, Junwen Zhang, Haipeng Zhang, Luis Alberto Campos
  • Patent number: 11418263
    Abstract: An optical full-field transmitter for an optical communications network includes a primary laser source configured to provide a narrow spectral linewidth for a primary laser signal, and a first intensity modulator in communication with a first amplitude data source. The first intensity modulator is configured to output a first amplitude-modulated optical signal from the laser signal. The transmitter further includes a first phase modulator in communication with a first phase data source and the first amplitude-modulated optical signal. The first phase modulator is configured to output a first two-stage full-field optical signal. The primary laser source has a structure based on a III-V compound semiconductor.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: August 16, 2022
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Haipeng Zhang, Junwen Zhang, Mu Xu, Zhensheng Jia, Luis Alberto Campos
  • Patent number: 11387929
    Abstract: A digital receiver is configured to process a polarization multiplexed carrier from a communication network. The polarization multiplexed carrier includes a first polarization and a second polarization. The receiver includes a first lane for transporting a first input signal of the first polarization, a second lane for transporting a second input signal of the second polarization, a dynamic phase noise estimation unit disposed within the first lane and configured to determine a phase noise estimate of the first input signal, a first carrier phase recovery portion configured to remove carrier phase noise from the first polarization based on a combination of the first input signal and a function of the determined phase noise estimate, and a second carrier phase recovery portion configured to remove carrier phase noise from the second polarization based on a combination of the second input signal and the function of the determined phase noise estimate.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: July 12, 2022
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Junwen Zhang, Zhensheng Jia, Mu Xu, Haipeng Zhang, Luis Alberto Campos, Curtis Dean Knittle