Patents by Inventor Muhammad Ikram

Muhammad Ikram has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931378
    Abstract: Strontium oxide (SrO) nanoparticle and various concentrations of chitosan (CS)-doped SrO nanocomposite were synthesized via co-precipitation method. A variety of characterization techniques including were done for characterizing and qualifying the nanocomposite. X-ray powder diffraction affirmed cubic and tetragonal structure of SrO nanoparticle and CS-doped SrO nanocomposite with a decrease in crystallinity upon doping. Fourier transform infrared spectrum endorsed existing functional groups on CS/SrO surfaces while d-spacing was estimated using high resolution Transmission electron microscopes images. UV-Visible and Photoluminescence spectroscopy spectra showed an increase in band gap energies with an increase in doping concentration. Elemental composition of CS-doped SrO nanocomposite deposited with different doping concentrations was studied using Energy dispersive Spectroscopy.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: March 19, 2024
    Assignee: Alfaisal University
    Inventors: Souraya Goumri-Said, Mohammed Benali Kanoun, Salamat Ali, Junaid Haider, Ali Haider, Muhammad Ikram
  • Patent number: 11932552
    Abstract: Strontium oxide (SrO) nanoparticle and various concentrations of chitosan (CS)-doped SrO nanocomposite were synthesized via co-precipitation method. A variety of characterization techniques including were done for characterizing and qualifying the nanocomposite. X ray powder diffraction affirmed cubic and tetragonal structure of SrO nanoparticle and CS-doped SrO nanocomposite with a decrease in crystallinity upon doping. Fourier transform infrared spectrum endorsed existing functional groups on CS/SrO surfaces while d-spacing was estimated using high resolution Transmission electron microscopes images. UV-Visible and Photoluminescence spectroscopy spectra showed an increase in band gap energies with an increase in doping concentration. Elemental composition of CS-doped SrO nanocomposite deposited with different doping concentrations was studied using Energy dispersive Spectroscopy.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: March 19, 2024
    Assignee: Alfaisal University
    Inventors: Souraya Goumri-Said, Mohammed Benali Kanoun, Salamat Ali, Junaid Haider, Ali Haider, Muhammad Ikram
  • Publication number: 20240057004
    Abstract: Systems, methods, apparatuses, and computer program products for Rx-Tx RTT estimation are provided. One method may include transmitting, by a network element, the reference signal to another network element and recording a time stamp (t0) of a time of transmission of the reference signal, and receiving an estimated Rx-Tx measurement from said another network element and recording a time stamp (t3) of a time of receipt of the estimated Rx-Tx measurement. The method may also include calculating a Rx-Tx measurement at the network element based on a difference between the time stamp (t0) of the time of transmission of the reference signal and the time stamp (t3) of the receipt of the estimated Rx-Tx measurement, and determining a propagation delay based on a difference between the received estimated Rx-Tx measurement and the calculated Rx-Tx measurement.
    Type: Application
    Filed: January 11, 2022
    Publication date: February 15, 2024
    Inventors: Muhammad Ikram ASHRAF, Thomas Haaning JACOBSEN, Zexian LI, Ryan KEATING
  • Publication number: 20240057022
    Abstract: A method may include receiving, by a first user device from a network node or a second user device, 1) a positioning measurement report including at least one positioning measurement measured by a reference device, and 2) reference positioning-related information to be used for testing and/or validating a machine learning model; determining estimated positioning-related information as outputs of the machine learning model based on at least a portion of the positioning measurement report as inputs to the machine learning model; determining a performance indication of the machine learning model based on the reference positioning-related information and the estimated positioning-related information, wherein the performance indication indicates a performance or accuracy of the machine learning model; and performing, by the first user device, an action based on the performance indication.
    Type: Application
    Filed: August 9, 2023
    Publication date: February 15, 2024
    Inventors: Muhammad Ikram ASHRAF, Teemu Mikael VEIJALAINEN, Mikko SÄILY, Oana-Elena BARBU, Taylan SAHIN, Afef FEKI, Athul PRASAD
  • Publication number: 20230413219
    Abstract: Disclosed is a method comprising determining one or more radio access nodes based on available location information of a target user device and at least one neighboring user device of the target user device; transmitting a sidelink information request to the one or more radio access nodes, wherein the sidelink information request indicates requesting sidelink information of the target user device and the at least one neighboring user device of the target user device; receiving the sidelink information from the one or more radio access nodes; and transmitting, to at least one of the one or more radio access nodes and/or the at least one neighboring user device, at least a part of a locality database and/or a sidelink positioning configuration for positioning the target user device, wherein the locality database and/or the sidelink positioning configuration are based at least on the sidelink information.
    Type: Application
    Filed: June 12, 2023
    Publication date: December 21, 2023
    Inventors: Muhammad Ikram ASHRAF, Taylan SAHIN, Mikko SÄILY, Ryan KEATING, Diomidis MICHALOPOULOS
  • Publication number: 20230190788
    Abstract: CS-doped SrO nanocomposite were successfully synthesized through co-precipitation route for bactericidal activities. Effect of CS doping on morphological features, optical properties, elemental composition and phase constitution on CS-doped SrO nanocomposite was analyzed. XRD analysis confirmed tetragonal and cubic structures of SrO nanoparticles and CS-doped SrO nanocomposite. UV-vis spectroscopy was used to obtain 4.19 eV of SrO nanoparticles while emission spectra of doped SrO showed blueshift upon CS doping with multi-concentration. Interlayer d-spacing attained from HRTEM micrographs well matched with XRD d-spacing. Purity content of prepared nanostructures was measured with EDS analysis. Overall, 0.06:1 showed significant antibacterial activity against both Gram +ve and -ve bacterial isolates. Thus, CS-doped SrO nanocomposite can be used in modem medicine as an alternative antibacterial to overcome the development of resistance to antibiotics.
    Type: Application
    Filed: December 15, 2021
    Publication date: June 22, 2023
    Applicant: Alfaisal University
    Inventors: Souraya Goumri-Said, MOHAMMED Benali Kanoun, Salamat Ali, Junaid Haider, Ali Haider, Muhammad Ikram
  • Publication number: 20230183087
    Abstract: Strontium oxide (SrO) nanoparticle and various concentrations of chitosan (CS)-doped SrO nanocomposite were synthesized via co-precipitation method. A variety of characterization techniques including were done for characterizing and qualifying the nanocomposite. X ray powder diffraction affirmed cubic and tetragonal structure of SrO nanoparticle and CS-doped SrO nanocomposite with a decrease in crystallinity upon doping. Fourier transform infrared spectrum endorsed existing functional groups on CS/SrO surfaces while d-spacing was estimated using high resolution Transmission electron rnicroscopes images. UV-Visible and PL Photoluminescence spectroscopy spectra showed an increase in band gap energies with an increase in doping concentration. Elemental composition of CS-doped SrO nanocomposite deposited with different doping concentrations was studied using Energy dispersive Spectroscopy.
    Type: Application
    Filed: December 15, 2021
    Publication date: June 15, 2023
    Applicant: Alfaisal University
    Inventors: Souraya Goumri-Said, Mohammed Benali Kanoun, Salamat Ali, Junaid Haider, Ali Haider, Muhammad Ikram
  • Publication number: 20210243649
    Abstract: Embodiments described herein provide methods and apparatus for transmitting at least one data stream comprising a plurality of samples between a first wireless device and a second wireless device using machine-to-machine communication. A method in the first wireless device comprises receiving the at least one data stream; generating a first data packet comprising N of the plurality of samples, wherein N is an integer value of greater than or equal to 2; and transmitting the first data packet to the second wireless device.
    Type: Application
    Filed: May 14, 2019
    Publication date: August 5, 2021
    Inventors: Gustav Wikström, Jonas Kronander, Muhammad Ikram Ashraf, Fedor Chernogorov, Johan Torsner
  • Publication number: 20200259896
    Abstract: Techniques for enhancing performance in Industrial Internet-of-Things (IIoT) scenarios, including techniques for time-sensitive networking (TSN) and 5G wireless network integration. An example method, performed by a wireless device, comprises receiving system information (SI) from a radio base station (RBS) of a radio access network (RAN), the SI being indicative of support for TSN through the RBS, and establishing at least one TSN stream with an external data network, through the RBS. The example method further includes receiving a first timing signal from the wireless communications network, via the RBS, receiving a second timing signal from the external TSN data network to which the wireless device is connected, comparing the first timing signal to the second timing signal to determine an offset, and transmitting the offset to the wireless communications network.
    Type: Application
    Filed: February 13, 2019
    Publication date: August 13, 2020
    Inventors: Joachim Sachs, Abdulrahman Alabbasi, Mattias Andersson, Niklas Andgart, Ola Angelsmark, José Araújo, Muhammad Ikram Ashraf, Kumar Balachandran, Robert Baldemair, Rodrigo Berg, Yufei Blankenship, Fedor Chernogorov, John Walter Diachina, Torsten Dudda, Henrik Enbuske, Sorour Falahati, János Farkas, Jonas Fröberg Olsson, Majid Gerami, Harald Gustafsson, Kimmo Hiltunen, Andreas Höglund, Torgny Holmberg, Zsolt Kenesi, András Kern, Kittipong Kittichokechai, Anna Larmo, Johan Lundsjö, György Miklós, Hubertus Munz, Gabor Nemeth, Johannes Nygren, Johan Olsson, Alexandros Palaios, Dhruvin Patel, Joakim Persson, Per Persson, Jose Luis Pradas, Sándor Rácz, Pradeepa Ramachandra, Norbert Reider, Dinand Roeland, Stefano Ruffini, Patrik Salmela, Sara Sandberg, Magnus Sandgren, Paul Schliwa-Bertling, Alexey Shapin, Nianshan Shi, Bikramjit Singh, Per Skarin, Bernard Smeets, Ying Sun, Dennis Sundman, Fredrik Svensson, Malgorzata Svensson, Geza Szabo, Wolfgang Tonutti, Balázs Varga, Mårten Wahlström, Kun Wang, Yi-Pin Eric Wang, Osman Nuri Can Yilmaz, Zhenhua Zou, Miguel Lopez
  • Publication number: 20190305415
    Abstract: A compact, low profile integrated antenna design covering both 4G and 5G applications with good performance and that fits in handheld mobile terminals. The antenna design is a PIFA-based MIMO antenna system for 4G standards integrated with a planar connected array (PCA) for 5G bands. The antenna is fabricated on a two-layer printed circuit board (PCB) accommodating four antenna elements (3, 4, 5 and 6) along with a planar connected array (9) on a top layer, and a plurality of parallel slots (12) forming a defected ground structure in a bottom layer. The integrated antenna has approximately a typical smart phone backplane size. The plurality of parallel slots behave as a defected ground structure (DGS) for isolation enhancement within the MIMO antenna system band at 2.1 GHz and as a radiator (PCA) for 5G applications at 12.5 GHz.
    Type: Application
    Filed: March 28, 2018
    Publication date: October 3, 2019
    Inventors: Mohammad S. Sharawi, Muhammad Ikram, Rifaqat Hussain
  • Patent number: 10297928
    Abstract: A compact MIMO antenna system having connected arrays supporting multi-bands with multiple configurations. Two low band microwave MIMO antenna arrays operate at frequency bands below 6 GHz, and two high band microwave MIMO antenna arrays operate at frequencies above 10 GHz. The antenna arrays are connected together as connected arrays and support 4G as well as 5G bands. The antenna arrays are carried by an overlying layer of dielectric material and overlie two slots formed as rectangularly shaped closed loop in an underlying ground plane. The low band arrays each have a feeding arm that spans across the slots to act as a single antenna element, and the high band antenna arrays are power combiners/dividers with a single feeding point and four elements forming a two-to-one structure exciting the underlying slots, wherein the slots are excited and shared for compact design and wide operating bandwidth.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: May 21, 2019
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mohammad S Sharawi, Muhammad Ikram
  • Publication number: 20180241136
    Abstract: A compact MIMO antenna system having connected arrays supporting multi-bands with multiple configurations. Two low band microwave MIMO antenna arrays operate at frequency bands below 6 GHz, and two high band microwave MIMO antenna arrays operate at frequencies above 10 GHz. The antenna arrays are connected together as connected arrays and support 4G as well as 5G bands. The antenna arrays are carried by an overlying layer of dielectric material and overlie two slots formed as rectangularly shaped closed loop in an underlying ground plane. The low band arrays each have a feeding arm that spans across the slots to act as a single antenna element, and the high band antenna arrays are power combiners/dividers with a single feeding point and four elements forming a two-to-one structure exciting the underlying slots, wherein the slots are excited and shared for compact design and wide operating bandwidth.
    Type: Application
    Filed: February 21, 2017
    Publication date: August 23, 2018
    Inventors: Mohammad S Sharawi, Muhammad Ikram
  • Patent number: 7724832
    Abstract: In MIMO wireless communications employing LMMSE receiver, the symbols transmitted through a transmit antenna are estimated at the receiver in the presence of interference consisting of two main components: one due to the additive noise and the other due to (interfering) symbols transmitted via the remaining antennas. This has been shown to hamper the performance of a communication system resulting in incorrect symbol decisions, particularly at low SNR. IMMSE has been devised as a solution to cope with this problem; In IMMSE processing, the symbols sent via each transmit antenna are decoded iteratively. In each stage of processing, the received signal is updated by removing the contribution of symbols detected in the previous iterations. In principle, this reduces the additive interference in which the desired symbols are embedded in. Therefore, the interference level should reduce monotonically as one goes down in processing order.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: May 25, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Srinath Hosur, Jaiganesh Balakrishnan, Michael Polley, Manish Goel, Muhammad Ikram
  • Publication number: 20060039489
    Abstract: A method for providing closed-loop transmit precoding between a transmitter and a receiver, includes defining a codebook that includes a set of unitary rotation matrices. The receiver determines which preceding rotation matrix from the codebook should be used for each sub-carrier that has been received. The receiver sends an index to the transmitter, where the transmitter reconstructs the precoding rotation matrix using the index, and precodes the symbols to be transmitted using the preceding rotation matrix. An apparatus that employs this closed-loop technique is also described.
    Type: Application
    Filed: July 15, 2005
    Publication date: February 23, 2006
    Applicant: Texas Instruments Incorporated
    Inventors: Muhammad Ikram, Eko Onggosanusi, Vasanthan Raghavan, Anand Dabak, Srinath Hosur, Badrinarayanan Varadarajan
  • Publication number: 20050171987
    Abstract: The present invention provides a folded low-complexity (FLC) pipeline. In one embodiment, the FLC pipeline includes a dot product unit chain configured to employ only addition and multiplication operations to compute intermediate numerators and denominators from a received signal matrix, a channel gain matrix and a noise matrix. Additionally, FLC pipeline also includes a divider stage configured to terminate the dot product unit chain by computing an unscaled quotient and a scale factor from ultimate ones of the intermediate numerators and denominators.
    Type: Application
    Filed: August 17, 2004
    Publication date: August 4, 2005
    Applicant: Texas Instruments Incorporated
    Inventors: Manish Goel, David Milliner, Srinath Hosur, Muhammad Ikram
  • Publication number: 20050163041
    Abstract: A Hybrid IMMSE-LMMSE receiver processing technique predicts performance of and selects between iterative and non-iterative decoding of symbols based on an intelligent metric. Based on a pre-specified criterion, the receiver determines if a correct first-stage decision is made or not. If a correct decision is made, then it follows iterative processing like in BLAST. Alternatively, if a wrong decision is found to have occurred, the receiver resorts to LMMSE estimation processing.
    Type: Application
    Filed: January 26, 2004
    Publication date: July 28, 2005
    Inventors: Muhammad Ikram, Srinath Hosur, Michael Polley, Manish Goel
  • Publication number: 20050113041
    Abstract: A system comprises a wireless device that communicates across a spectrum having a plurality of sub-channels. The wireless device comprises a plurality of antennas through which the wireless device communicates with another wireless device, wherein each antenna communicates with the other wireless device via an associated communication pathway. The wireless device further comprises sub-channel power analysis logic coupled to the antennas and adapted to determine which communication pathway has the highest communication quality on a sub-channel by sub-channel basis. The wireless device still further comprises diversity selection logic coupled to the sub-channel power analysis logic and adapted to determine a weighting vector for an associated antenna based on the communication quality, wherein the weighting vector specifies a relative transmission power for each sub-channel for the associated antenna.
    Type: Application
    Filed: November 26, 2003
    Publication date: May 26, 2005
    Applicant: Texas Instruments Incorporated
    Inventors: Michael Polley, Donald Shaver, Srinath Hosur, Eko Onggosanusi, Muhammad Ikram, Anand Dabak