Patents by Inventor Muhammad Rameez Chatni

Muhammad Rameez Chatni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11879989
    Abstract: In an embodiment, an antenna subsystem includes a sparse receive antenna and an electronically steerable transmit antenna. The sparse receive antenna includes an array of electronically steerable receive elements each configured to receive a respective signal having a wavelength and each spaced apart from each adjacent one of the receive elements by a respective first distance that is more than one half of the wavelength. And the electronically steerable transmit antenna includes an array of transmit elements each configured to radiate a respective signal having the wavelength and each spaced apart from each adjacent one of the transmit elements by a respective second distance that is less than one half of the wavelength. To reduce aliasing, such an antenna subsystem can be operated to filter, spatially, a receive beam pattern generated by the receive antenna with a transmit beam pattern generated by the transmit antenna.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: January 23, 2024
    Assignee: Echodyne Corp.
    Inventors: Nicholas K. Brune, Muhammad Rameez Chatni, Tom Driscoll, Jonathan R. Hull, John Desmond Hunt, Christopher L. Lambrecht, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Benjamin Sikes, Tarron Teeslink, Ioannis Tzanidis, Robert Tilman Worl, Adam Bily
  • Publication number: 20230394964
    Abstract: A method of detecting overspeeding for a vehicle, the method including obtaining historical trajectory data of a fleet of geographical areas from an electronic database; determining, by a microprocessor of a server, a distribution of speed of the historical trajectory data for each geographical area; based on the distribution of speed, determining, by a microprocessor of an electronic device associated with the vehicle, that a current speed of the vehicle is above a threshold speed corresponding to a pre-determined percentile of the distribution. A system and a computer-readable medium storing computer executable code for the method.
    Type: Application
    Filed: September 15, 2021
    Publication date: December 7, 2023
    Inventors: Muhammad Rameez CHATNI, Munirul ABEDIN, Laiyi LIN, Miaojun LI
  • Patent number: 11823572
    Abstract: A method of detecting overspeeding for a vehicle, including obtaining historical trajectory data of a fleet, of geographical areas from an electronic database; determining, by a microprocessor of a server, a distribution of speed of the historical trajectory data; calculating, on an electronic device associated with the vehicle, a determined probability of future overspeeding; wherein obtaining includes communicating, by the server an electronic request to the electronic database for the historical trajectory data, and the historical trajectory data from the electronic database to the server. An electronic device including a trajectory data acquisition circuit; a communication circuit to receive pre-trained weights for a trained classifier from a server; a processor to use a classifier configured with the pre-trained weights to calculate, based on trajectory data, a probability of future overspeeding being higher than a pre-determined threshold.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: November 21, 2023
    Assignee: GRABTAXI HOLDINGS PTE. LTD.
    Inventors: Muhammad Rameez Chatni, Munirul Abedin, Laiyi Lin, Miaojun Li
  • Publication number: 20230306841
    Abstract: A method of detecting overspeeding for a vehicle, including obtaining historical trajectory data of a fleet, of geographical areas from an electronic database; determining, by a microprocessor of a server, a distribution of speed of the historical trajectory data; calculating, on an electronic device associated with the vehicle, a determined probability of future overspeeding; wherein obtaining includes communicating, by the server an electronic request to the electronic database for the historical trajectory data, and the historical trajectory data from the electronic database to the server. An electronic device including a trajectory data acquisition circuit; a communication circuit to receive pre-trained weights for a trained classifier from a server; a processor to use a classifier configured with the pre-trained weights to calculate, based on trajectory data, a probability of future overspeeding being higher than a pre-determined threshold.
    Type: Application
    Filed: August 18, 2021
    Publication date: September 28, 2023
    Inventors: Muhammad Rameez CHATNI, Munirul ABEDIN, Laiyi LIN, Miaojun LI
  • Publication number: 20230147070
    Abstract: An embodiment of a radar subsystem includes at least one antenna and a control circuit. The at least one antenna is configured to radiate at least one first transmit beam and to form at least one first receive beam. And the control circuit is configured to steer the at least one first transmit beam and the at least one first receive beam over a first field of regard during a first time period, and to steer the at least one first transmit beam and the at least one first receive beam over a second field of regard during a second time period.
    Type: Application
    Filed: June 14, 2022
    Publication date: May 11, 2023
    Applicant: Echodyne Corp.
    Inventors: Tom Driscoll, John Desmond Hunt, Robert Tilman Worl, Muhammad Rameez Chatni, Aanand Esterberg, Kerem Karadayi, Christopher L. Lambrecht, Nathan Ingle Landy, Skyler Martens, Dominic Chun Kit Wu
  • Patent number: 11402462
    Abstract: An embodiment of a radar subsystem includes at least one antenna and a control circuit. The at least one antenna is configured to radiate at least one first transmit beam and to form at least one first receive beam. And the control circuit is configured to steer the at least one first transmit beam and the at least one first receive beam over a first field of regard during a first time period, and to steer the at least one first transmit beam and the at least one first receive beam over a second field of regard during a second time period.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: August 2, 2022
    Assignee: Echodyne Corp.
    Inventors: Tom Driscoll, John Desmond Hunt, Robert Tilman Worl, Muhammad Rameez Chatni, Aanand Esterberg, Kerem Karadayi, Christopher L. Lambrecht, Nathan Ingle Landy, Skyler Martens, Dominic Chun Kit Wu
  • Publication number: 20200309900
    Abstract: In an embodiment, an antenna subsystem includes a sparse receive antenna and an electronically steerable transmit antenna. The sparse receive antenna includes an array of electronically steerable receive elements each configured to receive a respective signal having a wavelength and each spaced apart from each adjacent one of the receive elements by a respective first distance that is more than one half of the wavelength. And the electronically steerable transmit antenna includes an array of transmit elements each configured to radiate a respective signal having the wavelength and each spaced apart from each adjacent one of the transmit elements by a respective second distance that is less than one half of the wavelength. To reduce aliasing, such an antenna subsystem can be operated to filter, spatially, a receive beam pattern generated by the receive antenna with a transmit beam pattern generated by the transmit antenna.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Applicant: Echodyne Corp.
    Inventors: Nicholas K. Brune, Muhammad Rameez Chatni, Tom Driscoll, Jonathan R. Hull, John Desmond Hunt, Christopher L. Lambrecht, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Benjamin Sikes, Tarron Teeslink, Ioannis Tzanidis, Robert Tilman Worl, Adam Bily
  • Patent number: 10684354
    Abstract: In an embodiment, an antenna subsystem includes a sparse receive antenna and an electronically steerable transmit antenna. The sparse receive antenna includes an array of receive elements each configured to receive a respective signal having a wavelength and each spaced apart from each adjacent one of the receive elements by a respective first distance that is more than one half of the wavelength. And the electronically steerable transmit antenna includes an array of transmit elements each configured to radiate a respective signal having the wavelength and each spaced apart from each adjacent one of the transmit elements by a respective second distance that is less than one half of the wavelength. To reduce aliasing, such an antenna subsystem can be operated to filter, spatially, a receive beam pattern generated by the receive antenna with a transmit beam pattern generated by the transmit antenna.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: June 16, 2020
    Assignee: Echodyne Corp.
    Inventors: Nicholas K. Brune, Muhammad Rameez Chatni, Tom Driscoll, Jonathan R. Hull, John Desmond Hunt, Christopher L. Lambrecht, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Benjamin Sikes, Tarron Teeslink, Ioannis Tzanidis, Robert Tilman Worl, Adam Bily
  • Publication number: 20190137601
    Abstract: An embodiment of a radar subsystem includes at least one antenna and a control circuit. The at least one antenna is configured to radiate at least one first transmit beam and to form at least one first receive beam. And the control circuit is configured to steer the at least one first transmit beam and the at least one first receive beam over a first field of regard during a first time period, and to steer the at least one first transmit beam and the at least one first receive beam over a second field of regard during a second time period.
    Type: Application
    Filed: November 6, 2018
    Publication date: May 9, 2019
    Applicant: Echodyne Corp
    Inventors: Tom Driscoll, John Desmond Hunt, Robert Tilman Worl, Muhammad Rameez Chatni, Aanand Esterberg, Kerem Karadayi, Christopher L. Lambrecht, Nathan Ingle Landy, Skyler Martens, Dominic Chun Kit Wu
  • Publication number: 20180156891
    Abstract: In an embodiment, an antenna subsystem includes a sparse receive antenna and an electronically steerable transmit antenna. The sparse receive antenna includes an array of receive elements each configured to receive a respective signal having a wavelength and each spaced apart from each adjacent one of the receive elements by a respective first distance that is more than one half of the wavelength. And the electronically steerable transmit antenna includes an array of transmit elements each configured to radiate a respective signal having the wavelength and each spaced apart from each adjacent one of the transmit elements by a respective second distance that is less than one half of the wavelength. To reduce aliasing, such an antenna subsystem can be operated to filter, spatially, a receive beam pattern generated by the receive antenna with a transmit beam pattern generated by the transmit antenna.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 7, 2018
    Inventors: Nicholas K. Brune, Muhammad Rameez Chatni, Tom Driscoll, Jonathan R. Hull, John Desmond Hunt, Christopher L. Lambrecht, Nathan Ingle Landy, Milton Perque, Charles A. Renneberg, Benjamin Sikes, Tarron Teeslink, Ioannis Tzanidis, Robert Tilman Worl, Adam Bily