Patents by Inventor MUHAMMAD YUSUF ALI

MUHAMMAD YUSUF ALI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11152350
    Abstract: An electronic device, e.g. integrated circuit, has an n-type region and a p-type region located within a semiconductor substrate, the n-type region and the p-type region each intersecting the substrate surface. A dielectric structure is located directly on the substrate surface. The dielectric structure has first and second laterally opposed sides, with the first side located over the n-type region and the second side located over the p-type region.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: October 19, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mahalingam Nandakumar, Alan Erik Segervall, Muhammad Yusuf Ali
  • Patent number: 11133143
    Abstract: A two-wire current loop system includes a current loop with a transmitter and a host. The system also includes a monolithic integrated circuit included with the transmitter. The monolithic integrated circuit includes: 1) a power supply terminal coupled to the current loop; 2) a loop ground terminal coupled to the current loop and configured to output a current to the current loop; 3) device circuitry with a power supply node and an internal ground node, wherein the power supply node is coupled to the power supply terminal; and 4) a reverse wiring protection circuit coupled between the internal ground node of the device circuitry and the loop ground terminal.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: September 28, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Masahiro Yoshioka, Muhammad Yusuf Ali, Kevin Ryan Duke
  • Patent number: 11011508
    Abstract: An electronic device, e.g. an integrated circuit, is formed on a P-type lightly-doped semiconductor substrate having an N-type buried layer. First and second N-wells extend from a surface of the substrate to the buried layer. A first NSD region is located within the first N-well, and a second NSD region is located within the second N-well. A PSD region extends from the substrate surface into the substrate and is located between the first and second NSD regions. A P-type lightly-doped portion of the substrate is located between the N-well and the substrate surface and between the PSD region and the first and second NSD regions.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: May 18, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mahalingam Nandakumar, Robert Callaghan Taft, Alan Erik Segervall, Muhammad Yusuf Ali
  • Patent number: 10998308
    Abstract: A semiconductor device has a protected node and a reference node, and a bi-directional ESD structure electrically coupled between the protected node and the reference node. The bi-directional ESD structure includes a main transistor electrically coupled between the protected node and the reference node, an upper control transistor with current nodes electrically coupled between the protected node and a control node of the main transistor, and a lower control transistor with current nodes electrically coupled between the reference node and a control node of the main transistor. The bi-directional ESD structure also includes an upper trigger network configured to provide a transient on-state signal to the upper control transistor from a positive electrical pulse on the protected node. The bi-directional ESD structure further includes a lower trigger network configured to provide a transient on-state signal to the lower control transistor from a negative electrical pulse on the protected node.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: May 4, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Xianzhi Dai, Muhammad Yusuf Ali
  • Publication number: 20210028163
    Abstract: A semiconductor device has a protected node and a reference node, and a bi-directional ESD structure electrically coupled between the protected node and the reference node. The bi-directional ESD structure includes a main transistor electrically coupled between the protected node and the reference node, an upper control transistor with current nodes electrically coupled between the protected node and a control node of the main transistor, and a lower control transistor with current nodes electrically coupled between the reference node and a control node of the main transistor. The bi-directional ESD structure also includes an upper trigger network configured to provide a transient on-state signal to the upper control transistor from a positive electrical pulse on the protected node. The bi-directional ESD structure further includes a lower trigger network configured to provide a transient on-state signal to the lower control transistor from a negative electrical pulse on the protected node.
    Type: Application
    Filed: July 22, 2019
    Publication date: January 28, 2021
    Applicant: Texas Instruments Incorporated
    Inventors: Xianzhi Dai, Muhammad Yusuf Ali
  • Publication number: 20200194423
    Abstract: An electronic device, e.g. an integrated circuit, is formed on a P-type lightly-doped semiconductor substrate having an N-type buried layer. First and second N-wells extend from a surface of the substrate to the buried layer. A first NSD region is located within the first N-well, and a second NSD region is located within the second N-well. A PSD region extends from the substrate surface into the substrate and is located between the first and second NSD regions. A P-type lightly-doped portion of the substrate is located between the N-well and the substrate surface and between the PSD region and the first and second NSD regions.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 18, 2020
    Inventors: Mahalingam Nandakumar, Robert Callaghan Taft, Alan Erik Segervall, Muhammad Yusuf Ali
  • Publication number: 20200194422
    Abstract: An electronic device, e.g. integrated circuit, has an n-type region and a p-type region located within a semiconductor substrate, the n-type region and the p-type region each intersecting the substrate surface. A dielectric structure is located directly on the substrate surface. The dielectric structure has first and second laterally opposed sides, with the first side located over the n-type region and the second side located over the p-type region.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 18, 2020
    Inventors: Mahalingam Nandakumar, Alan Erik Segervall, Muhammad Yusuf Ali
  • Publication number: 20200111634
    Abstract: A two-wire current loop system includes a current loop with a transmitter and a host. The system also includes a monolithic integrated circuit included with the transmitter. The monolithic integrated circuit includes: 1) a power supply terminal coupled to the current loop; 2) a loop ground terminal coupled to the current loop and configured to output a current to the current loop; 3) device circuitry with a power supply node and an internal ground node, wherein the power supply node is coupled to the power supply terminal; and 4) a reverse wiring protection circuit coupled between the internal ground node of the device circuitry and the loop ground terminal.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 9, 2020
    Inventors: Masahiro YOSHIOKA, Muhammad Yusuf ALI, Kevin Ryan DUKE
  • Patent number: 10446537
    Abstract: In accordance with at least one embodiment, an ESD device comprises: a semiconductor; a pad; a ground rail; a p-well formed in the semiconductor; a first p-type region formed in the p-well and electrically coupled to the ground rail; a first n-type region formed in the p-well and electrically coupled to the pad; a second n-type region formed in the p-well and electrically coupled to the ground rail; an n-well formed in the semiconductor; a first n-type region formed in the n-well; a first p-type region formed in the n-well and electrically coupled to the pad; and a second p-type region formed in the n-well and electrically coupled to the first n-type region formed in the n-well.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: October 15, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Gianluca Boselli, Muhammad Yusuf Ali
  • Patent number: 10373944
    Abstract: Disclosed examples include integrated circuits, fabrication methods and ESD protection circuits to selectively conduct current between a protected node and a reference node during an ESD event, including a protection transistor, a first diode and a resistor formed in a first region of a semiconductor structure, and a second diode formed in a second region isolated from the first region by a polysilicon filled deep trench, where the first and second diodes include cathodes formed by deep N wells alongside the deep trench in the respective first and second regions to use integrated deep trench diode rings to set the ESD protection trigger voltage and prevent a parasitic deep N well/P buried layer junction from breakdown at lower than the rated voltage of the host circuitry.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: August 6, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Akram A. Salman, Muhammad Yusuf Ali
  • Patent number: 10249610
    Abstract: In some examples, an electrostatic discharge (ESD) device comprises an insulated-gate bipolar transistor (IGBT) comprising a source terminal, an anode terminal, a gate terminal, and a body terminal; and at least one reverse bias device comprising a first terminal and a second terminal, wherein the first terminal couples to the source terminal and the second terminal couples to the body terminal.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: April 2, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aravind Chennimalai Appaswamy, James P. Di Sarro, Krishna Praveen Mysore Rajagopal, Akram A. Salman, Muhammad Yusuf Ali
  • Patent number: 10181721
    Abstract: An electrostatic discharge (ESD) protection circuit includes a high power supply rail (VDD) and a low power supply rail (VSS). The ESD protection circuit further includes an active shunt transistor coupled between VDD and VSS. The active shunt transistor includes a gate. The ESD protection circuit also includes a sensing transistor connected between an input/output (I/O) pad and the gate of the active shunt transistor. If an ESD stress event occurs on the I/O pad or on a VDD pad, the sensing transistor is caused to be turned ON thereby permitting a voltage on the I/O or VDD pad experiencing the ESD stress event to turn ON the active shunt transistor in turn causing ESD current to flow from the pad experiencing the ESD event, through VDD, and through the active shunt transistor to VSS.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: January 15, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Xianzhi Dai, Farzan Farbiz, Muhammad Yusuf Ali
  • Publication number: 20180366460
    Abstract: In accordance with at least one embodiment, an ESD device comprises: a semiconductor; a pad; a ground rail; a p-well formed in the semiconductor; a first p-type region formed in the p-well and electrically coupled to the ground rail; a first n-type region formed in the p-well and electrically coupled to the pad; a second n-type region formed in the p-well and electrically coupled to the ground rail; an n-well formed in the semiconductor; a first n-type region formed in the n-well; a first p-type region formed in the n-well and electrically coupled to the pad; and a second p-type region formed in the n-well and electrically coupled to the first n-type region formed in the n-well.
    Type: Application
    Filed: December 7, 2017
    Publication date: December 20, 2018
    Inventors: Gianluca BOSELLI, Muhammad Yusuf ALI
  • Publication number: 20180247925
    Abstract: Disclosed examples include integrated circuits, fabrication methods and ESD protection circuits to selectively conduct current between a protected node and a reference node during an ESD event, including a protection transistor, a first diode and a resistor formed in a first region of a semiconductor structure, and a second diode formed in a second region isolated from the first region by a polysilicon filled deep trench, where the first and second diodes include cathodes formed by deep N wells alongside the deep trench in the respective first and second regions to use integrated deep trench diode rings to set the ESD protection trigger voltage and prevent a parasitic deep N well/P buried layer junction from breakdown at lower than the rated voltage of the host circuitry.
    Type: Application
    Filed: February 28, 2017
    Publication date: August 30, 2018
    Applicant: Texas Instruments Incorporated
    Inventors: Akram A. Salman, Muhammad Yusuf Ali
  • Publication number: 20170163032
    Abstract: An electrostatic discharge (ESD) protection circuit includes a high power supply rail (VDD) and a low power supply rail (VSS). The ESD protection circuit further includes an active shunt transistor coupled between VDD and VSS. The active shunt transistor includes a gate. The ESD protection circuit also includes a sensing transistor connected between an input/output (I/O) pad and the gate of the active shunt transistor. If an ESD stress event occurs on the I/O pad or on a VDD pad, the sensing transistor is caused to be turned ON thereby permitting a voltage on the I/O or VDD pad experiencing the ESD stress event to turn ON the active shunt transistor in turn causing ESD current to flow from the pad experiencing the ESD event, through VDD, and through the active shunt transistor to VSS.
    Type: Application
    Filed: February 16, 2017
    Publication date: June 8, 2017
    Inventors: Xianzhi DAI, Farzan FARBIZ, Muhammad Yusuf ALI
  • Patent number: 9614368
    Abstract: An electrostatic discharge (ESD) protection circuit includes a high power supply rail (VDD) and a low power supply rail (VSS). The ESD protection circuit further includes an active shunt transistor coupled between VDD and VSS. The active shunt transistor includes a gate. The ESD protection circuit also includes a sensing transistor connected between an input/output (I/O) pad and the gate of the active shunt transistor. If an ESD stress event occurs on the I/O pad or on a VDD pad, the sensing transistor is caused to be turned ON thereby permitting a voltage on the I/O or VDD pad experiencing the ESD stress event to turn ON the active shunt transistor in turn causing ESD current to flow from the pad experiencing the ESD event, through VDD, and through the active shunt transistor to VSS.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: April 4, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Xianzhi Dai, Farzan Farbiz, Muhammad Yusuf Ali
  • Patent number: 9425188
    Abstract: An electrostatic discharge (ESD) protection integrated circuit (IC) includes a substrate having a semiconductor surface, a high power supply rail (VDD) and a low power supply rail (VSS) on the semiconductor surface. A trigger circuit including at least one trigger input and at least one trigger output is coupled between VDD and VSS. An active shunt including at least a large MOSFET is coupled between VDD and VSS. The trigger output is coupled to a gate electrode of the large MOSFET, and at least one diode or diode connected transistor (blocking diode) is coupled between VDD and the trigger circuit, within the trigger circuit or between the trigger output and gate electrode.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: August 23, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Muhammad Yusuf Ali, Rajkumar Sankaralingam
  • Publication number: 20160233668
    Abstract: An electrostatic discharge (ESD) protection circuit includes a high power supply rail (VDD) and a low power supply rail (VSS). The ESD protection circuit further includes an active shunt transistor coupled between VDD and VSS. The active shunt transistor includes a gate. The ESD protection circuit also includes a sensing transistor connected between an input/output (I/O) pad and the gate of the active shunt transistor. If an ESD stress event occurs on the I/O pad or on a VDD pad, the sensing transistor is caused to be turned ON thereby permitting a voltage on the I/O or VDD pad experiencing the ESD stress event to turn ON the active shunt transistor in turn causing ESD current to flow from the pad experiencing the ESD event, through VDD, and through the active shunt transistor to VSS.
    Type: Application
    Filed: February 10, 2015
    Publication date: August 11, 2016
    Inventors: Xianzhi DAI, Farzan FARBIZ, Muhammad Yusuf ALI
  • Patent number: 9154133
    Abstract: An inverter type level shifter includes a first power supply voltage and a first ground voltage. A first inverter operates on the first power supply voltage and the first ground voltage to generate a first inverter output. The first inverter includes a first PMOS transistor having a drain coupled to a source of a blocking PMOS transistor and a first NMOS transistor having a drain coupled to a source of a blocking NMOS transistor. The level shifter further includes a second power supply voltage and a second ground voltage, and a second inverter coupled to the first inverter output and operates on the second power supply voltage and the second ground voltage. The blocking PMOS provides the required blocking on the event of the voltage spike in the second power supply voltage w.r.t the first power supply voltage and the blocking NMOS transistor provides the required blocking on the event of the voltage spike in the second ground voltage with respect to the first ground voltage.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: October 6, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Muhammad Yusuf Ali, Rajkumar Sankaralingam, Charles M. Branch
  • Publication number: 20150085409
    Abstract: An electrostatic discharge (ESD) protection integrated circuit (IC) includes a substrate having a semiconductor surface, a high power supply rail (VDD) and a low power supply rail (VSS) on the semiconductor surface. A trigger circuit including at least one trigger input and at least one trigger output is coupled between VDD and VSS. An active shunt including at least a large MOSFET is coupled between VDD and VSS. The trigger output is coupled to a gate electrode of the large MOSFET, and at least one diode or diode connected transistor (blocking diode) is coupled between VDD and the trigger circuit, within the trigger circuit or between the trigger output and gate electrode.
    Type: Application
    Filed: September 23, 2014
    Publication date: March 26, 2015
    Inventors: MUHAMMAD YUSUF ALI, RAJKUMAR SANKARALINGAM